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I. Rpo Summary

The research supported by DARPA Contract No. N00014-88-K-0392 concerns

the investigation of the physical properties of the components of a new solid state

microbattery. This battery consists of a lithium metal anode, a lithium borate

glass separator, and a cathode of the layer compound InSe which readily

intercalates lithium ions and which is also an electronic conductor. The battery

operates by the passage of lithium ions between the electrodes through the borate

glass separator and the passage of electrons between the electrodes via the

external circuit. A single battery of this type produces a voltage of 2.7 V, can be

discharged with a current density of 5OAcm 2 and can achieve a specific energy

of 300Wh kg- 1 . It is the ultimate objective of this project to produce systems

composed of many microbatteries for applications requiring high voltage, high

current density and/or high energy density.

In order to achieve this objective, it is necessary to have a fundamental

understanding of fast ion transport in the lithium borate glasses and of both fast

ion and electron transport in the layer compound. This fundamental

understanding has been advanced by both experimental and theoretical work, the

experimental work being carried out at the Laboratoire de Physique des Solides in

Paris by the group of Professor M. Balkanski of the Universit6 Pierre et Marie

Curie, and the theoretical work being carried out at the University of California,

Irvine, under this contract. For the lithium borate glasses the experimental work

has provided measurements of ionic conductivity as well as infrared and Raman

spectra, while the theoretical work has provided a quantitative understanding of

ion migration and interionic forces. For the lithium-intercalated layer compound

InSe, the experimental studies have yielded important data on optical properties

due to electronic transitions and on infrared and Raman spectra. The theoretical

studies have yielded the electronic band structure of lithium intercalated InSe
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and detailed information on interionic forces in this material. The results of the

investigations just described provide the -basis for establishing the desired

fundamental understanding of fast ion and electron transport in the microbattery

components.
0 Summaries of the individual projects now follow.

A. Dynamical Properties of Fast Ion Conducting Borate Glasses

Experimental and theoretical investigations which lead to an improved

0 understanding of the physics of ion diffusion in lithium-doped borate glasses have

been carried out. The results of network dynamics and lattice dynamics

calculations of the atomic vibrations of undoped and doped borate glasses, i.e.,

* B203 and B203 -xLi 20, respectively, have been correlated with Raman scattering

and infrared reflectivity measurements. Addition of the modifier Li2O has been

shown to, cause a transformation of three-coordinated to four-coordinated boron

0 atoms. The force constant for B-0 interactions has been found to be larger for

four-coordinated boron than for three-coordinated boron. The introduction of

dopants, e.g., Li2 SO4 or LiX (with X = F, Cl, Br, I) leads to a significant increase in

* the ionic conductivity.

B. Effect of Intercalated Lithium on the Electronic j. -. _,.of Tndiur

Selenide

The effect of intercalated lithium on the electronic structure of the 3- and

y-- polytypes of InSe has been investigated using a tight-binding model. The

energy bands of the pure polytypes were calculated and the results compared with

previous work. The tight-binding parameters associated with intercalated

lithium atoms were obtained using tabulated atomic functions. The modifications

of the energy bands and Fermi level produced by the introduction of one lithium

atom per unit cell were calculated for the lowest potential energy positions of the

lithium atom in the Van der Waals gap between layers. The intercalation
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induced changes in the smallest and next-to-smallest direct band aps were

determined. An -interpretation of a new photoluminescence peak in lithium-

intercalated InSe has been developed, and the existence of a lithium impurity

band in this material has been established.
C. Lattice Vibrational Properties of Lithium-Intercalated Indium Selenide

A theoretical investigation of the normal modes of vibration of pure and

lithium-intercalated InSe has been carried out. Lattice dynamical models have

* been developed for both materials. The force constants were determined by fitting

calculated normal mode frequencies to experimental infrared and Raman

spectra. It has been found that localized vibrational modes associated with

* lithium-atom vibrations appear in the lithium-intercalated InSe. One localized

mode occurs at a very high frequency and corresponds to a lithium atom vibrating

perpendicular to the layer plane, while a second localized mode occurs at a much

* lower frequency and corresponds to a lithium atom vibrating parallel to the layer

plane. The results of this investigation provide precise information concerning

the forces of interaction between an intercalated lithium atom and the

* neighboring indium and selenium atoms.

D. Molecular Dynamics Study of the Lattice Vibration Contribution to the

Frequencv-Dependent Dielectric Constant of Lithium Iodide

* A promising approach to realistic calculations of fast ion dynamics in

lithium borate glasses involves molecular dynamics whereby one solves the

classical equations of motion of the ions on a computer for a given set of interionic

* potentials. This is a very complicated problem for a disordered system such as a

glass, so we have started this project by performing a molecular dynamics

simulation of a simpler system, namely, the crystal lithium iodide, Li!. A rigid

ion potential was used with pairameters fit to thermal expansion, isothermal

compressibility, lattice energy, and the frequency of the transverse optical mode at
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the zone center. The current-current'correlation function was calculated at

T = 200K and 400K, and from this function the real and imaginary parts of the

dielectric function as functions of frequency were obtained. Anharmonic

broadening was observed at the higher temperature. The experience gained from

0 this calculation will be of great value in carrying out the more difficult molecular

dynamics simulation for a lithium borate glass.
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Ii. Detailed Project Reports

A.Dynamical Properties of Fast Ion Conducting Borate Glasses

M. Balkanski*, R. F. Wallis, J. Deppe

Department of Physics

University of California

Irvine, CA 92717, U.S.A.

M. Massot

Laboratoire de Physiques des Solides

Universite Pierre et Marie Curie

4, place Jussieu, 75252 Paris Cedex 05, FRANCE

1. Introduction

Fast ion conducting glasses have attracted considerable

interest in recent years in view of their use as separators in

solid state batteries. A solid state cell is formed of three

components: an ion source, usually Li; a dielectric insulator but

good ion conductor such as the lithium borate glass, for example,

which acts as a separator between the anode, ion source and the

cathode or electron exchanger; and an insertion compound acting as

an electron exchanger. The requirements of the separator are to

be shape adaptable in order to assure good contact with the ion

source and the exchanger and to have a good ionic conductivity.

Another important characteristic is that the separator should be

as perfect a dielectric as possible in order to prevent electronic

leakage and assure a long shelf lifetime of the batteries. The

borate glasses are one of the best materials among those known
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today to respond to all these re±cpiiimnts.

The boron oxide glass is a very g~od insulator and

constitutes the glass former. Upon ttm addition of a modifier

such as Li 20, for example, the structure of the glass is

significantly changed. In addition, some fraction of the Li2 0

dissociates releasing free lithiuz ions and thus considerably

increasing the ion conductivity of the glass. A further increase

of the conductivity is achieved by adding a dopant containing the

mobile ion, Li in this case. The "Efect of the dopant upon the

concentration of free ions available for the conduction process

has been investigated recently (1]. Spectroscopic investigations

on the structure of borate glasses with different modifier

concentrations and different dopants have also been extensively

developed and a summary is given in a recent publication [2].

The structural modifications conditioning the fast ion

conduction in borate glasses are inferred mainly from spectro-

scopic data which reflects the dynamical properties of the glass

matrix. it was therefore important to develop theoretical studies

on the vibrations of the glass in parallel with the experimental

investigations. We shall present here simultaneously the

:heoretical and experimental results on the vibrational properties

of the borate glass with the aim of reaching some conclusions on

the conditions for increasing the ionic conductivity of the

=lass. in successive chapters we shall deal with the vibrations

of pure borate glass, Chapter 2, and with the modifications

occurring when different concentrations of Li20 are added to the

borate glass, Chapter 3. Chapter 4 will be devoted to the effect

o. different dopants, and in Chapter 5 we shall discuss the effect

of the glass structure on the lithium mobility and present a
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statistical mechanical theory of 1onic conductivity. In Chapter 6

a double well model of frequency-dependent conductivity will be

discussed.

2. Vibrations of Boron Oxide Glass

The structure of the boron oxide glass has been studied by

X-ray -31, Raman (4], infrared (5], nuclear magnetic resonance (6]

and neutron diffraction (7] measurements. According to these

observations, boron oxide glass is formed of an infinite network

of boroxol groups B303 . The six atoms inside the group form a

planar ring and the B-O-B angle is 1200. These boroxol hexagons

are interconnected by an oxygen bridge -0- and the external B-O-B

angle z, less accurately determined, is about 1300. The relative

geometry of two successive boroxol planes is not well known.

One of the characteristic features of the vibrational spectra

of v-B20, observed by Raman scattering (2] and shown in Fig. 1 is

the presence of a sharp peak at 800 cm- 1 which is strong and well

polarized (8]. Usually the vibrational spectra of amorphous solids

are expected to consist of broad bands (see for example ref. 9).

This is because the localized molecular mode responsible for a

sharp peak couples with all other atoms and broadens when a net-

work is formed. For example, Galeener et al. (8] have calculated

vibrations of v-B 203 using the Bethe lattice approximation

(described in detail below) and obtained only broad bands due to

extended modes.

There have been a few attempts to understand theoretically

the possible existence of sharp features in the vibraticnal spec-

tra. Kristiansen and Krogh-Moe (10] calculated the vibrational

frequencies of the boroxol molecule with atoms of variable mass
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attached to the outer oxygen atoms and found that the mode at 800

cm - does not vary much when the mass is changed. Galeener et al.

(11] explain the decoupling of rings from the rest of the network

by a somewhat fortuitous cancellation of central and noncentral

forces.

Galeener and Thorpe (121 have also discussed the introduction

of 6-fold boroxol rings into a continuous random network model of

v-B203 . They conclude that the 800 cm- 1 mode consists of a

breathing motion of the intra-ring oxygen, and therefore does not

couple to the outside network.

Kanehisa and Elliott (13] have demonstrated this decoupling

explicitly using a cluster Bethe-lattice approximation as outlined

in the following section.

2.1. The Bethe lattice aporoximation

M. A. Kanehisa and R. J. Elliott (131 have used an extension

of the Bethe lattice approximation to calculate a partial vibra-

tional density of states of the boroxol network. They show by

exDLicit calculation that the 800 cm - mode v2 of the boroxol

group remains sharp even when an infinite network is formed. This

calculation confirms the earlier assumption F4,51 that this mode

involves Mainly the "breathing" motion of oxygen atoms inside the

ring while zhe boroxol-boroxol coupling on network formation

involves =ainly motion of the boron atoms and the external

(binding) oxygen atoms.

Using the Bethe lattice approximation Kanehisa and Elliott

were able to solve the equations of motion for an infinite system

having definite lcoal symmetry without long-range order. The

Bethe lattice considered is pictured in Fig. 3. The matheatical

details and the methods used to treat a boroxol unit embedded in
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the Bethe lattice are published eisewhere (13).

The vibrational spectrum of an isolated boroxol molecule is

calculated first. By adjusting the v2 mode frequency for the

isolated boroxol molecule.to the experimental value of 800 cm- 1,

the force constant a is determined to be 9.4x10 5 dyn cm-1 . The j

vibrational density of states calculated for the network is shown

in Fig. 4. A width 7 of 100 cm-1 is added in order to account for

the bond angle fluctuation around the ideal values. The calcu-

lated vibrational density of states spectrum compares reasonably

well with the experimental Raman spectrum, shown in Fig. 1. There

is a gap at 1200-1500 cm- 1 separating the low and high frequency

bands in the calculated spectrum as in the experimental spectrum.

The higher frequency bands are mainly due to boron atom motion

while those below the aap are due mainly to oxygen atom motion.

The most remarkable feature in this calculation is the fact that

the v2 mode at 800 cm
-1 , remains sharp without any significant

broadening on network formation. This is probably the first

explicit demonstration of the vibrational decoupling of a

molecular mode from the rest of the network.

3. Effect of the addition of modifier Li2 O to v-Bn03 : The system

3.1. Experimental results

The Raman spectra of the binary glass B203-xLi2O are shown in

Fig. 5. At low Li20 concentration, x = 0.1, the 800 cm
-1 band

corresponding to the breathing oxygen motion in the boroxol ring,

the v2 mode trigonal deformation of the ring shown in Fig. 2, is

still narrow and strong. A new band appears at 780 cm-1 which

corresponds to the trigonal deformation of six-membered borate
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rings with one or two BOA units (:2] as shown in Fig. 6 for the

* tetraborate, triborate or diborate configuration. The band at 500

cm- I corresponds to the breathing mode v3 (Fig. 2) where the boron

and the bridging oxygen atoms move in phase. The mode vl, at 1240

cm- ! , is associated with the symmetric vibration of the same

atoms. The band between 1400 and 1550 cm-1 is associated with the

stretching vibrations of the B-O bonds in BO3 units. The three

regions associated with the stretching vibrations of the B-0 bonds

which link the boron-oxygen network will be modified upon addition

of Li2o, which leads to the transformation of trihedrally

coordinated boron, B"', to tetrahedrally coordinated boron, BIv,

according to the reaction

\ /0 1 2-
B + Li 20 B-O-B- + 2Li
O~~~1 0 -U +L

For low Li20 concentration, the abundance of BIV increases, (with

* increasing modifier concentration); as a consequence, the intens-

ity of the line at 780 cm-1 increases while that at 806 cm- 1

decreases and finally vanishes at x = 0.3. For x larger than 0.5,

the frequency of the BIV band decreases until it reaches 760 cm-
1

in the metaborate glass x = 1.0.

At high Li20 concentration (x > 0.5), the formation of non-

bridging oxygen atoms is inferred from the relative intensity

increase of the two bands at 960 and 1480 cm
- I

Two stages of modification can be distinguished when the

concentration of the modifier increases. During the first stage,

the tetrahedrally coordinated boron units increase and lead to an

S 15
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increase of the linkage of the boron-oxygen network up to x = 0.5.

Above this concentration, formation of B03 units with nonbridging

oxygen atoms "opens" the borate units and consequently the degree

of linkage of the network is decreased.

3.2 Theory

With the vibrational frequencies of groups of atoms in a

given configuration deduced from spectroscopy data, it is of

interest to calculate the vibrational spectrum with some specific

short-range configuration. Toward this end, we have employed the

network-dynamics theory and lattice dynamics in order to effect an

indirect determination of the glass structure. Central force

network-dynamics seems an ideal method to investigate the relati'm

between local environmental changes and the modes of vibrations,

since the short range order can be easily modified.

3.3. Methods of Calculation

3.3.1. Network dynamics

The network-dynamics method, introduced by Sen and Thorpe

[14], considers only nearest-neighbor central forces in the

continuous random network under consideration; the other forces,

for example, long-range Coulomb and angle bending forces, are much

smaller in many cases. This approximation might be expected to

hold particularly well in the optical frequency range with which

we will be concerneu.

Thorpe and GaleeneL U15) have put the central-force model of

Sen and Thorpe in a mute general framework using a Lagrangian

formulation.

In the above-mentioned formulation, the bond directions at

each atom are used to define a local coordinate system. The

labels, 2, 21', etc., denote the sites, or atoms, in the network

17



and a, L' etc., denote the bonds or directions at each site. The

displacement of the Xth atom along the a bond is written as

q AM). With this notation, a(2),qA,(2-) refer to displacements

at the same site, but in different directions, and qa(2),qA(2,)

refer to displacemen-: of two nearest neighbors along the bond

joining them. In t: ...ise, the potential energy of the network

takes a oarticur" '.,. form:

V q (2)+2 (3.1)
. ,2 ',a)

where a is the near-'.v-neighbor force constant. The angular

brackets under the summation indicate that each bond is to be

counted only once.

In the case of fourfold-coordinated (or planar threefold-

coordinated) atoms, the qa(1) form an overcomplete set, so a

constraint must be built into the the Lagrangian to ensure that

E q a()=0 for each atom 2. One can accomplish this, by adding to

the potential a term

and then taking the limit A - at the end of the calculation to

ensure that all solutions are consistent with the constraint

E~c q(Z)=O.

The expression for the kinetic energies depends on the

particular local environment of the atom, i.e., whether it has

two, three, or four nearest heighbors. To find this expression,

we consider -he transformation between a fixea x,y,z coordinate

system and tbe local bond direction coordinate system as shown in

Fig. 7. With these expressions in hand, it is straightforward to

gendrate the Lagrangian for any particular network under consideratiun,

18
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)= T((qi)) - V((qi)) , (3.5)

where the curly braces, ... ), indicate the set of qi for all

atoms i. The equations of motion are then given by

d 6L aL 0
dt. a.

oq i  8ai

As discussed in the previous section, we have seen that the

addition of Li20 to B2 03 is accompanied by the appearance of

groups containing fourfold-coordinated borons. In addition, the

concentration of these structures increases proportionally with

the concentration of the modifier Li20 up to a critical value

Xc . we shall consider a network containing both threefold- and

fourfold-coordidated borons. Indeed, for the composition

B203-O. Li20, one can envision a network of equal numbers of

threefold- and fourfold-coordinated borons. Here we consider one

such network, with each thre.%fold-coordinated boron surrounded by

fourfold-coordinated borons and vice versa, shown in Fig. 8

Using the results from the last section for twofold-,

threefold- and fourfold-coordinated atoms, 
the Lagrangian for the

network drawn in Fig. 8 takes the form

L rm I [ (2)] 2 + M [I a *k (2)+b ( ) ( 2] + M a' )

i2 1 2

2 a

- fq (2) + x(2' ) ] 2  - 6 xY + X2 (21 ) ] 2

- ~ q 1 (i ' 2 ;'

*where a = (l-cosO) , a + 2b = (l+cose) 1 ancL

where we use q,(44) and force constant a for the fourfold-

coordinated borons, yA(2) and force constant j for the threefold-

20
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coordinated borons, x1, 2 (2) for the oxygen in the directions of

q(2),y(2), respectively, and again Mboron = m, Moxygen = M. The

equations of motion and their solution are presented in a separate

publication (16].

The central-force eigenfrequencies of the network are

determined by the relation

23 2)2

12(A 1- ma2 - = (a') 2

where we have defined the frequency-dependent force constants

MW2u aBcose
(Mw2)2_(at )M 2 + .sin28

S2 (M22sin29)

3. a+(M2) 2_ (a+f)Mw 2+ aOsin 2

2 2 2* 2M (M ,2sin 0)B1= 8+ (M2)2_ 2 ) 2+ i29

This equation determines the allowed central-force frequency bands

as a function of the force constants a and ,5, the masses, and the

bridging angle 9.

3.3.2. Lattice Dynamics

The lattice-dynamics calculations were carried out as an

independent check on the network-dynamics results. As such, they

were done in the nearest-neighbor central-force approximation.

No disagreement was found between the lattice-dynamics and

network-dvnamics calculations. The two methods are quite comple-

zenrary in examining the effect of varying various parameters,

22



such as force constants, intermolecular bridging angles, or

configurations on the vibrational spectrum of the solid.

3.4. Results and Discussion

When a modifier, Li2 0 for example, is added to the glass

former B203, the modes involving the B-0 bonds which link the

boron oxygen network are modified. This can be understood as

being due to the transformation of threefold- to fourfold-

coordinated boron.

As can be seen in the experimental data for B203 -O.0Li2 O from

Fig. 5, the vibrational spectra are significantly modified by the

addition of lithium oxide (18]. A new band appears at 776 cm-1n

the Raman spectrum, and a set of broad features moves up in the

infrared spectrum, all due to the presence of BO, groups. At the

same time, the intensities of the 808- and 170-cm-
1 peaks in the

Raman spectrum and the 1360-cm- 1 peak in the infrared spectrum are

seen to decrease in intensity, relative to the other peaks, with

increasing Li20 concentration. The new bands observed in the

infrared spectrum at 800 and 1030 cm-1 are attributed to BO4 bond

stretching in tetraborate groups [19].

In Fig. 9, the results of network- and lattice-dynamics cal-

culations (16] are presented for P/o = 0.8. Note that the

general features in the spectra such as the narrowing of the

middle frequency gap as compared to the data of pure B203, are

found in the network-dynamics results. The widening of the high-

frequency gap, presumably due to the difficulty of the modes

associated with B03 groups to hybridize with those of the stiffer

B04 groups, is also found.
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If we compare the results in'Figs. 9 and 10 with the Raman

spectra shown in Figs. 1 and 5, the agreement is quite striking.

The results for = 0.9 feature a large frequency gap which is in

excellent agreement with the experimental data for x = 0. The

P= 0.8 calculation results in more extended frequency bands which

represents very closely the spectra displayed in Fig. 5 for

B203 -0.5Li2O. The appearance of modes at 960 and 1120 cm- 1 in the

formerly featureless mid-frequency band is "allowed" by the broad-

ening of the bands predicted by the network-dynamics results. The

peaks at 505 and 672 cm- in the Raman spectra are basically un-

affected by the addition of the modifier, and as expected the low-

and high-frequency band edges of the first band are unchanged.

It is interesting to note that such simple calculations

should yield results representing well the trentis in the spectral

distribution of different vibrational modes in the binary glass

system as a function of modifier concentration. This result

suggests that the force constants used are reasonable, and again

underscores the importance of local order in understanding the

vibrational response of covalently bonded glass.

4. The Effect of Dopants

4.1. Structural modifications induced by the Dopant

Two types of dopants which introduce additional free Li ions

and increase the ionic conductivity of borate glasses are exam-

ined: the lithium halides LiX (X = F,CI,Br,I), and lithium sulfate

Li2 SO4 . A general observation is that the dopeats do not

significantly modify the glass structure which simply localizes

the anion leaving as the only mobile species the small lithium

cation. The larger the anion, the stronger is its interaction

with the host network.
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Raman and infrared spectra displayed in Figs. 13 and 12 show

more pronounced changes in the spectra as one goes from F to Cl,

Br, and finally I. The main effect is a decrease in the intensity

of the peak at 808 cm- 1 measuring the relative abundance of tri-

hedralily coordinated boron Bill atoms and an increase of the peak

at 734 cm - characteristic of the vibration of tetrahedrally

coordinated boron BIV. Analysis of the shape of the B04 bands,

784 cm-1 in Raman scattering and 850-1100 cm "1 in infrared

reflectivity, points toward the redistribution of these units into

the network. For glass doped with LiF they are included preferen-

tialiv in tetraborate groups [21], and the fluorine anions

participate in the network forming B03 F and B02 F2 units F22].

Chlorine, bromine and iodine anions enter the network in inter-

stitial positions [18]. Introduction of the dopai,t alt results in

the breaking of B-O-B links and the formation of B04 units. Their

distribution in the network is conditioned by electrostatic-inter-

actions between the negative anion and the BO4 units. Modifica-

tion of the boron- oxygen network conformation results in a less

linked network facilitating free ion diffusion.

In the ternary glass B203-0.57Li2O-yLiX, in which the modi-

fier concentration is such that the glass does not contain boroxol

rings, the modification due to the introduction of dopant salts is

characterized in the Raman spectrum by the appearance of a shoul-

der at about 720 cm- 1 on the 770 cm- 1 band due to the vibration of

four-coordinated boron atoms. Fur a given halide anion this new

line shifts toward lower frequencies and its intensity increases

with increasing dopant salt concentration, y, as shown in Figure

13. At the same time the frequency of the band at 520 cm- 1 due to
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the in-phase motion of the bridgihg oxygen and the boron atom in-

creases. The stiffening of this mode, which is higher the larger

the anion size, corresponds to a compression of the B-O-B band.

There is also an increase of intensity of the bands at 960

and 1480 crM- attributed to the vibrations of groups -with non-

bridging oxygen atoms. Sharpening of these bands and a shift

toward higher frequencies is observed when going from LiCI to LiI

with the same concentration.

Infrared reflectivity data corroborate the general findings

from Raman scattering as to the effect of the addition of a dopant

salt to the borate glass. A new reflectivity band appears at 245

cm- 1 when a dopant is added, as seen in Figure 14, which shifts

toward lower frequencies when changing the dopant salt from LiF

(1245 cm- I ) to Lil (1220 cm-1). This is consistent with the

formation of B03 units with nonbridging oxygen atoms. This result

points toward a decrease of the linkage of the network. When a

doping salt is added, the network is expanded. The B04 groups are

transformed into B03 triangles and B03 with nonbridging oxygen

atoms which can be connected into chains, a configuration which is

consistent with the softening of the mode and which is favored

when the size of the anion is increased.

These modifications of the boron-oxygen network of the

ternary glasses have shown that in all the cases the lithium

halide addition results in an expansion of the network, the effect

being most pronounced with LiI. These results agree with density

and glass transition temperature measurements.

These observations are of prime importance for the under-

standing of the ion transport properties of the borate glasses.

31



B 2 03.O.r-7Li 2 O(D LiX

I-m

* 0*

00 Ln

6m

T 0.24 Li r
u-I
0%

Wavenum- (c- -1

2"'3-

32 24i



The B04 groups may be considered as negative ions with a large

ionic radius which provide binding sites with small binding energy

for the mobile lithium ions. At low modifier content the increase

of ionic conductivity comes from the increase of the number of BOA

-units and of the number of free lithium ions. But for higher

oxide content there is competition between two competing mechan-

isms: an increase in the number of free lithium ions provided by

the dissociation of the dopant salt and conversion of the BO4

units into B03 units with nonbridging negatively charged oxygen

atoms which trap the lithium ions. In the range of large Li2O

modifier content the conductivity is less sensitive to the

addition of the doping salt.

4.2. Effect of the dopant Li2SO4 : B2 03-xLi2O-yLi2 SO4

Comparison of the Raman scattering spectra of the binary

B203 -0.7Li2O and ternary B203 -0.7Li20-0.42Li2 SO4 systems, dis-

played in Figure 15, shows that-the spectrum of the Li2SO4 doped

glass consists of the superposition of the spectra of B2 03-0.7Li 2O

and Li2SO4. The peaks appearing at 456, 644, 1004 and 1100 cm-1

correspond respectively to v2, /4, v1 and v3 vibrations of the

sulfate ion (231.

Analysis of the infrared reflectivity spectra presented in

Figure 16 reveals the disappearance of the band at 1235 cm- due

to rotations in the trigonal B03 units with nonbridging oxygen

* atoms. Sulfate addition transforms these groups into B04 units

included in the tetraborate or diborate groups (24]. Formation of

diborate groups preferentially indicates that there is an

* expansion of the netw6rk to accommodate the sulfate ions with a

decrease of the degree of linkage of the network.
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5. Ion conduction in lithium borate alasses.

5.1. Introduction

We have seen in the previous chapter that in this superionic

conductor the dopant salt LiCI or Li2 SO4 is dissolved in a solid

matrix consisting of the lithium borate glass B203-xLi 2O. The

salt dissociates giving Li+ ions and Cl- or LiSO 4- and So42-

ions. The Li+ ions are highly mobile and significantly increase

the electrical conductivity of the system. The situation is auite

analogous to the electrolytic solution where a salt is dissolved

in a liquid solvent such as water. There is one significant

difference, however, and that is that water has a dielectric

constant of about 80 whereas borate glasses have a dielectric

constant of about 8. This means that at room temperature a

typical salt such as LiCl will be nearly fully dissociated in

aqueous solution but will be only weakly dissociated in the borate

glass. Furthermore, in the latter case, the concentration of

lithium ions will increase rapidly as the temperature is increased

above room temperature. Consequently, the electrical conductivity

of the doped borate glasses should increase rapidly with

increasing temperature as is well demonstrated experimentally.

The electrical properties of these glasses have been studied

by the method of complex impedance in the range from 20 Hz to 1

MHz at temperatures ranging between 20 and 4000 C. The activation

energy Ea was calculated from the conductivity a according to the

formula

E
a = a0exp (- kT)
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The values obtained lie in the range 0.46-0.72 eV. At low

cozncentrations x and y, the value of the activation energy

:1_acrcases rapidly as either concentration is increased but changes

.... slowly at high concentrations.

5.2. Calculation of mobile Li* ion concentration r251

The system that we are considering can be compared with that

oi an alkali halide such as NaCl doped with CaCl 2 or CdCl 2 , which

nas been discussed previously (26]. The Ca2+ or Cd2+ ions

substitute for Na+ ions in the lattice and, to preserve electro-

neutrality, positive ion vacancies must be introduced simul-

taneously with a concentration equal to that of Ca2+ or Cd2+.

Positive ion vacancies behave as negative charges which, when

dizsociated from the Ca2+ or Cd2+ ions, are mobile and can

.d zjute to the electrical conductivity. The overall activation

energy for the conductivity is the sum of a part connected with

the diosociation of a positive ion vacancy from a divalent cation

and another part connected with the diffusion of a positive ion

vacancy under the influence of an applied electric field. In our

system the mobile lithium ions are analogous to the positive ion

vacancies. The concentration of lithium ions as a function of

temperature and dopant concentration is calculated considering an

ensemble of Li2SO4 molecules dispersed in a borate glass that is

assumed to be a continuous medium [25]. If the molecules are

regarded as being isolated, and we assume that only one Li* ion

can be i-.nized per molecule (these assumptions being valid in the

iow concentration limit at temperatures which are not too high),

the conductivity can be written as
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where r6  is the distance of closest approach of an Li
+ ion to an

LiO- ion, r0 is the distance of closest approach of an Li+ ion to

an LiSOA ion,

The lower limit r. can be estimated frcm Paulina's values

(271 for the S-O distance and the radii for 0 and Li-. Adding

these values gives the result r0 = 2.70A. From Paulina's

radii t27] one obtains the value 2.0A for r6.

Using the Einstein relation connectina the mobi ity g and the

* diffusicn coefficient D, and recognizing that both quantities may

have an activation energy Eah associated with activated hopping,

one can write

eD
k BT

eD0  h

B B-

one sees that a plot of ln(GT 3/ 2 ) vs. 1/T
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for x = 0 or y = 0 should yield a straight line. Even when

neither x nor y is zero, this plot should still be very close to a

straight line. When the slope of the line is multiplied by - kB

the effective artivation energy Ea for the conductivity is

obtained.

In this case the parameter nT is taken to be 1.0 x 1022 cm- 3

while the parameters Do, Eat and c are varied to give the best

least-squares fit to the experimental data. The mobility activa-

tion energy Eah is determined from the y = 0 data (with only Li20

present) to be 0.38 eV and is kept at this same value for the

y - 0 data (with, Li2SO4 present). The parameters Do and c are

determined for each value of y. Calculations were carried out

using both procedures. The results are as follows.

The quantity ln(aT 3/ 2 ) is plotted against the reciprocal of

the absolute temperature in Fig. 17 for each of the compositions

y = 0.0, 0.05, 0.10 and 0.15. The theoretical curves are straight

lines which fit the experimental data quite well except for some

deviations at the two lowest temperatures. From the values of

determined by the fits to the data, the values of the dissociation

activation energies Ead and Eld were calculated

The overall activation energy Ea was determined from

the slopes of the theoretical curves in Fig. 17. The results for

Dot " Ea E' and the theoretical and experimental values of Ea

are presented in Table 1. One can see that the four quantities

Do, , Ead and Ea'd show only a weak dependence upon the

composition variable y, and that their magnitudes are physically

S reasonable. The magnitude of Do agrees roughly with the relation

:281 Do = V+rh2/6 where v+ and rh are the hopping frequency and
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TABLE 1. Conductivity parameters for B203 -xLi2 0-yLi2SO4 without

Debye-Huckel effects

SD o - Ead Ead Ea Ea

(cm2 - (eV) (eV) (theo- (experi-

s- 1) retical) mental)

(eV) (eV)

0.00 0.14 8.1 -- 0.44 1.02 0.93

D.05 0.16 8.2 0.32 0.44 0.86 0.90

1.10 0.22 8.4 0.31 0.43 0.83 0.83

0.15 0.24 8.5 0.30 0.42 0.81 0.82

TABLE 2. Conductivity parameters for B203 -xLi20-yLi2SO4 with

Debye-Htckel effects

DO  Ead El Ea Ea0 ad ~adaa

(cm2  (eV) (eV) (theo- (experi-

-
1) retical) mental)

(eV) (eV)

D.00 0.039 8.1 - 0.44 0.93 0.93

3.05 0.041 8.2 0.32 0.44 0.82 0.90

2.10 0.056 8.4 0.31 0.43 0.80 0.83

2.15 0.058 8.5 0.30 0.42 0.80 0.82
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hopping distance respectively. Taking 0.2 cm2 s -1 as being a

representative value of Do from Table 1, and taking (28]

v. = 101 4 s, we find that rh = 11 A; a not unreasonable value.

The conductivity a is plotted against y in Fig. 18(a) for the

temperatures 469 and 489 K, in Fig. 18(b) for temperatures 539 and

569 K and in Fig. 18(c) for temperatures of 619 and 659 K. As in

Fig. 17 there are appreciable deviations between the theoretical

and the experimental results for the two lowest temperatures, but

for the four highest temperatures the agreement is good. One can,

of course, improve the agreement for the two lowest temperatures

by making c temperature dependent.

The analysis which has been presented here differs signifi-

cantly from the standard analysis( 2 6 ,2 8 ) of the role of positive

ion vacancies in the electrical conductivity of duwpd alkali

halide crystals. In the standard treatment a positive ion vacancy

is regarded as being completely free unless it occupies one of the

12 next-nearest-neighbor sites of a divalent cation. We make no

such assumption in our treatment and take into account the Coulomb

interaction at large separations of an Li+ ion from an LiO- or

LiSO 4 - ion.

The theory which we have developed for the dissociation of

Li2SO4 in lithium borate glasses B203-Li2O gives a good

representation of the dependence of the conductivity on the Li2 SO4

content and on the temperature. By comparing the experimentally

determined conductivity with the theoretical results one obtains

information concerning the activation energy associated with the

mobility, the diffusion constant and the dielectric constant.

A closer examination of the experimental data would require
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some discussion of the pre-exponential factor related to the

relaxation time and of the effect of interactions between Li+ ions

on the conductivity. A detailed examination of the latter effect

would require a more elaborate theory taking into account the

Debye-Huckel concentration dependence of the ionic atmosphere.

Such a treatment is presented in the next section.

5.3. Effect of Coulomb Interactions

The effect of Coulomb interactions between free lithium ions

on the electrical conductivity of borate glass modified by Li20

and doped with Li2SO4 has been examined (29]. The improved theory

shows a distinct lowering of the conductivity, at least for

relatively low temperatures, arising from the Coulomb interactions

between free Li+ ions. At low temperatures a given Li+ ion is

slowed by its interactions with its ion atmosphere.

The effect of the Coulomb interaction between free Li+ ions

can be taken into account by using the Debye-Hiickel theory in a

form applied by Lidiard [26] to a similar problem. What has to be

done is to replace the dissociation constants K(T) and K'(T) by

KDH(T) and K _H(T) given by

K D..H(T) 1 exp[ - 2 (2A) 3/2 (4n )1/2 1l.}]

(T) exp[ 2... - ( 3 /2 (4r.n 1/2 }]
';Hn0 0 F

2

where C = 8 rnFTA. The auantities rI and rI are the minimum

distances of Li- from LiSO 4 - and LiO- respectively, for which the

* Li ion can be considered to be free. We do not know r, and r'

a priori, but we anticipate that rl>r0 and r{ > rA. Their precise
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specification will be given later. Since the new equilibrium con-

stants involve nFT, the mass action law equations are now trans-

cendental euations for the determination of nFT and must be

solved self-consistently.

*I we introduce the quantities n = no + and n' =

which are respectively the total concentrations of Li2SO4 and

Li2O, we can rewrite

n
0= ltnFTKDH(T)

* n'n=

n 6  1+nFTKH(T)

Using conservation of lithium ions, we have

nFT =n o + no

n +

* I+nFTKDH(T) +nFTK H(T)

This is the equation that must be solved self-

consistently to give the total free Li+ ion concentration nFT.

Once nFT is found, we can determine the conductivity a using

the relation

Sa = FT

where u .s zhe mobility. In the presence of the Coulomb inter-

action between the free Li+ ions, the mobility p n for the non-

* interacting case must be multiplied by a factor r given by
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nf 'ifI
n+n' n+n'

where

f 1- X2/2

31 12) (l+vr{) (21 / 2 +icre)f-

The expression for the conductivity then takes the f6rm

a = e~ nnT
eg n FT*

Using the Einstein relation between the mobility jn and the

diffusion coefficient D, we can write

eD
n= kBT

eD0  Eah

where Lah is the mobility activation energy. Also contributing

to tlhe overall conductivity activation energy Ea are the
dissociation activation energies Ead and Ead for Li2SO4 and Li,0

respectively

The values of the parameters r0 and r;

were taken to be those given in section 5.2: r0 = 2.7 A and

r; = 2.0 A. The values of the other parameters were determined

as follows. For the case y = 0 (no Li2SO4 present) with free-

lithium-ion interactions neglected, the values of Do, c and Eah
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were determined by making a best fit of the calculated conduc-

tivity to the experimental data. In the case of c, the value

reflects additional experimental data not considered in section

5.2. The value of Eah obtained, 0.48 eV, was -used in all the

subsequent calculations. For each case with y o 0 and free-ion

interactions neglected, we redetermined D0 and e to give the best

fit to the data.

When the interactions between free Li
+ ions were included,

the values of Do, rI and r' were obtained by a best fit to the

data, but the values of c -were maintained the same as in the non-

interacting case. Using calculated values of the conductivity a,

the values of the activation energy Ea were found from the slope

of the plot of ln(aT 3/ 2 ) vs. l/T. The best values of r, and ri

were determined to be r-, = 3r0 and ri = 3r&- The values of the

remaining parameters are presented in Table 2.

The results for the conductivity are presented in Figs.

19-21 for the various, compositions and temperatures considered.

Except for the highest temperatures and Li2 SO4 concentrations,

there is a small but distinct lowering of the conductivity which

arises from the Coulomb interaction between the free Li ions.

* Although the interaction leads to an increase in the free-ion

concentration due to shielding of the negative ion potential, this

effect is more than offset by a reduction in the mobility. A

*given ion is slowed by its interaction with its ion atmosphere. As

the temperature increases, the lowering of the conductivity

decreases and is hardly evident at the two highest temperatures.

This behavior can be understood on the basis that an increase in

temperature increases the random thermal motion of the free LiV
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ions and reduces the correlations which arise from the Coulomb

interaction between them. These results are consistent with the

picture that the lithium borate glasses behave as weak electro-

lytes with only a small fraction of the Li2O and Li2SO 4 molecules

ionized at the temperatures employed in the experiments.

5.4. Summary

The fast ion conductivity in borate glasses such as

B203 -xLi2O-yLi2SO4 calculated from a statistical mechanical theory

based on the assumption of a partial dissociation of the dopant

salt, Li2SO4 , and the modifier, Li20, compares well with the

experimental results. The temperature dependence of the conduc-

tivitv obtained experimentally is well reproduced by the theory.

In the theoretical treatment given in section 5.2, the Coulomb

interaction between free Li+ ions was not taken into account.

This theory already gives the possibility of obtaining information

concerning the activation energy associated with the mobility, the

diffusion constant and the dielectric constant by comparing the

experimentally determined conductivity with the theoretical

result.

An improvement in our treatment is achieved by the calcula-

* tions presented in section 5.3 which show that a distinct lowerina

of the conductivity, at least for relatively low temperatures,

arises from the Coulomb interaction between free Li+ ions. At low

* temperatures a given Li+ ion is slowed by its interactions with

its ion atmosphere. As the ion atmosphere becomes more diffuse at

higher temperatures, the effective slowing of the motion of an

individual ion by the Coulomb interaction with its neighbors

decreases.
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A further refinement in the theoretical treatment of fast ion

conduction may come from the consideration that the LiO- and

LiSO 4 - ions fixed at given sites in the glass network may also

have the possibility of dissociating to yield Li+ ions which will

40further contribute to the conductivity. This process is less

probable than the first dissociation, because its activation

energy 's significantly larger than that for the first dissocia-

=ion. At sufficiently high temperatures, the influence of the

second dissociation would be indicated by an increase in the

apparent activation energy.

S. Lithium motion in borate alasses

6.1. Intrcduction

The infrared spectrum of lithium borate glasses

B203 -xLi2O-vLi2SO. can be regarded as consisting of two parts:

the low frequency domain which concerns the charge carrier

dynamics and the higher frequency region concerning the host

dynamics.

in sections 2 and 3, the dynamical properties of the host

network were examined. We shall now turn to free carrier

dynamics.

Structural and dynamical properties are generally investi-

gated by Raman spectroscopy (301 and the ionic conductivity is

measured by means of complex impedance spectroscopy (25].

infrared spectroscopy is a complementary method offering the

POssibility of deducing the frequency-dependent conductivity at

low frequencies and the conduction ion dynamics.

* The infrared reflectivity -f B203 -xLi20-yLi2SO4 increases

considerably at frequencies below 500 c-'. This high reflectiv-
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ity corresponds to the motion of the Li+ ions and allows us to

deduce the frequency dependent ionic conductivity. Analysis based

on a simple double well potential model leads to a picture in

which the characteristic vibrational friquencies of the Li+ ion is

distributed over a large frequency rane corresponding to differ-

ent site configurations. The extent of the frequency distribution

is a function of the free ion concentration. A drastic increase

of the damping coefficient is observed when the concentration

increases.

The potential barrier regulating the motion of the Li+ ions

between different site configurations also increases with

increasing Li+ ion concontration which corresponds to a decrease

of residence frequency and increase of residence relaxation time.

6.2. Description of the Model

Infrared and Raman spectroscopy (30) as well as nuclear

magnetic resonance measurements (31) indicate that with increasing

modifier concentration x the amount of B04 groups increases up to
0

a maximum of 40% of boron atoms in tetrahedral coordination for

x = 0.4. Above this concentration the amount of BO4 decreases.

The relative abundance of the BO4 ions in the vitreous matrix

0 suggests that the small Li+ ion spends a certain time oscillating

against that radical. The motion of the Li+ ion at long distances

through the glass medium can be characterized by an activation

energy E much larger than the -double-well potential A (Fig. 22).

The Li+ ion should overcome this potential when moving from one

position in the n-ighborhood of BO to another. Thus, the dynam-

*ics of the Li+ ion could be schematically treated within the

framework of a double potential well model.
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The eauation for the oscillatory motion of the Li' ion

considered as a Brownian particle can be written as

m x - m~x + U'(x) = f(t)

with

u'(x) = au(x)ax

and

U (x) = A T)- 2( CH2I
o 0

U(x) describes the double potential well with minima situated at

x = +X0 . The damping coefficient 7 and the random force f(t)

describe the interaction of the mobile ions with the thermal

* vibrations of the network.

Following the treatment given by Schneider et al. (32],

frequency-dependent conductivity can be written in the form

a-(w) = f7 (W)

Here f is the oscillator strength defined asS

NLie
mLi

and r(w) is the frequency dependent scattering time defined by

the expression

r = (z+y+X(z) -
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with z = i, and the memory function

X_(_Z) = _:2rz + 1
o L-z

40 -2
Here to =<u,,>/m

--- [i<X2><U,,>]--

<..ls the thermal average, and k B kT. The: time r is

related to the escape time by r es2*-i

The adjustable- parameters for comparison with experimental

data are the oscillator strength f, the lithium vibrational

frequency in the site w the damping coefficient 7, and the

dimensionless parameter 6 related to the height of the potential

barrier S = 460. With the frequency dependent conductivity a (w)

in hand we can calculate the dielectric function

+ 4(ria ( )

and confront the reflectivity which is obtained experimentally

2

R Jic_1

6.3. Comparison with Experimental Data-

Infrared reflectivity measured with the Bruker type IFSl13

vacuum infrared Fourier spectrometer give broad spectra over the

range of 10 - 3000 cm-1 . In Fig. 23 is shown the reflectivity

spectrum of a glass with composition B203-0.7Li20 taken at room
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temperature. The dotted line represents the experimental points

and the continuous line is the calculated curve.

Figure 24 shows the frequency dependent conductivity a(w) for

the same sample, the real and imaginary parts of the dielectric

constants and the energy loss. The points represent the Kramers-

Kronig inversion of the experimental reflectivity and the

continuous line gives the calculated curves. The maximum of

Im(e.)] in Fig. 24 situated at t2 = 40 cm-1 determines the

relaxation frequency of the Li+ ion jumping from one potential

well to another through the barrier A.

When a dopant, such as Li2SO4 , is added to the borate glass

the ionic conductivity increases. A series of doped borate glasses

B203-O.7Li20-yLi2SO 4 in a broad concentration range of the dopant

salt, 0 y 5 0.5 has been studied with the same experimental

technique. The remarkable feature in this investigation is that

whereas the frequency of the maximum of the broad band w does not

change with concentration, one observes a significant change of

the damping coefficient y. The damping coefficient varies from

7 = 240 cm " when y = 0 to 7 = 62 cm for y = 0.5. From the

conductivity a(w), the real and imaginary parts of the dielectric

function, Re(c) and Im(c), and Im(-1/c) deduced from the reflec-

tivity spectra for different concentrations y of the dopant

Li2SO4, one can deduce that the relaxation frequency w is now 20

cm - , a drastic decrease with increased doping.

From Fig. 25, which is a summary of the experimental results,

one observes that while the characteristic frequency w remains

constant, the damping decreases and the oscillator strength f

increases with increasing dopant concentration y.
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From the results shown in Fig. 24 one can see that the char-

acteristic frequency for the Li+ ion vibration in a nondoped

borate glass B203 -0.7Li20 is widely spread over a large frequency

range from 130-600 cm-1 but has a maximum at wo = 389 cm-1 , and

has the damping constant I = 243 cm- 1. The resonance centered at

389 cm-1 is very broad which is an indication that the configura-

tion of the BO4 site attracting the Li+ ion is not unique. This

result suggests rather that Li+ is found in different sites in the

borate glass at different space positions with regard to the BO,

ion. in each specific site, Li+ has a characteristic vibration

but because of the large variety of site configurations, the

characteristic frequencies are spread over a broad frequency range

with a maximum in the distribution around 390 cm-1 . At low Li+

concentration the whole spectrum of different cites is available

for Li+ occupation and the distribution of occupied sites is cuite

broad. When the Li+ concentration is increased with the addition

of the dopant Li2SO4 into the borate glass B203 -0.7Li20, the most

frequent site configurations become more readily occupied, the

occupancy density of closely resembling sites becomes greater, and

the dispersion in the distribution decreases. The increasing

Li+-Li+ Coulomb interaction forces the Li+ ion into the most

favorable configuration. Thus, the resonance sharpens signifi-

cantly which is indicated by a considerable decrease of the

damping constant, i.e., an increase of the relaxation time, the

time the Li spends in a site of given configuration. The oscil-

lator strength f increases, of course, with the increase of the

dopant concentration because the number of Li+ ions increases.

The relaxation frequency of Li+, t 2 = 2wescJ given by the maximum
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of Im(f) is 2 = 40 cm- for the nondoped borate glass. This

gives a potential barrier a = 21.7 meV. For the doped glasses we

obtain w 2 = 20 cm-1 and 6 = 40 meV. The most probable or the most

abundant potential wells are twice as deep for high Li+ concentra-

tion. This is compatible with a larger residence time and smaller

damping constants, i.e., small escape frequency. From the

definition of the oscillator strength one should

expect a linear relation between NLi and f with a given slope

(e 2/mLI). Comparison of the values of f obtained from the fit

with the experimental data, fexp, and that calculated with eq.

(6.5), fcal, we see a considerable difference. Considering the

values listed in Table 3, one observes that fexp is practically

double fcal" This suggests that e and mLi are not the charge and

mass of the frz= Li+ ion but are instead the effective charge (e*)

and effective mass (m*) as modified by the polarization induced in

the medium. The sites in which Li+ vibrates are polarizable, which

must be taken into account when calculating f

The frequency dependent conductivity sum rule is different for

a rigid and for a polarizable medium. For a rigid medium we have

fOa (w) di NLie
2

f 2 mLi

whereas for a polarizable medium the sum rule is

CO e £ +2
fa()dw = (w Lie*2 2

0 2 a

Here e* is the Szigeti effective charge and m* the reduced mass

which for a tetrahedral oxygen environment of the Li+ will be

given, for example, by
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TABLE 3. Values of lithium concentration, dielectric colnstant,

and oscillator strength for various concentrations y of the dopant

y NLi(cm) e fexp(cm 2 ) fcal(cm- 2 ) fexp/fcal

0.0 2.2 1022 2.06 21774 12204 1.784

0.1 2.28 1022 2.06 24704 12648 1.953

0.2 2.32 1022 2.18 27369 12869 2.127

0.4 2.38 1022 2.13 29512 13202 2.235

*~ m
m* LiO

mLi+4m0  0.68 mLi

The ratio e*/e is given by

e*/e fexr m* %+21/2
f col m •

For different dopant concentrations y we obtain the values 
given

in Table 4.

This result shows that, in fact, the polarizability of the

* B203-0.7Li 2O-Li2SO4 network does not affect considerably the Li
+

oscillatory motion because the effective charge e* is not very

different from the free Li
+ charge e.
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TABLE 4. Effective charge of Li+ for various concentrations y of

the dopant.

y e /e

0 0.81

0.1 0.85

0.2 0.86

0.4 0.89

7. Conclusions

After long discussions in the literature it now seems

established that the v-B 203 network is mainly formed by boroxol

rings connected with B-O-B bonds and B03 triangles. Direct

calculation of the vibration of boron oxide glass, using the Bethe

lattice approximation, show that the boroxol ring vibration at 800

cm remains sharp even when an infinite network is formed.

The effect of the addition of the modifier Li2 0, was investi-

gated experimentally by Raman and infrared spectroscopy and theo-

retically by network dynamics and lattice dynamics calculation.

The modifier was found to increase the number of free lithium ions

which act as charge carriers, and also to significantly modifify

the host structure through the transformation of trihedrally

coordinated boron atoms into tetrahedrally coordinated boron. The

* concentration dependence shows that this second effect goes

through a maximum for x = 0.4 and then decreases as a result of
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the formation of B03 groups with non-bridging oxygen atoms which

carry a negative charge. Compared with the experimental data, the

results of network and lattice dynamics calculations seems to give

an adequate picture of the structure and vibrational response of

lithium doped borate glasses.

Introduction of dopants in the form of alkali halide salts

produces by dissociation an additional free lithium concentration

and also a modification of the host configuration dependent on the

size of the anion. Flourine enters in the network in substitu-

tional positions forming BO3 F and B02 F2 units. Chlorine, bromine

and iodine enter interstitial positions which produces breaking of

B-O-B links and formation of BO4 units. This modification of the

boron oxygen network results in a less linked network facilitating

t-h- f-ee ion diffusion. The effect is more pronounced for Lii a,%!

decreases with the anion size.

Doping with Li2SO4 leads to analogous effects. The effect of

Li2So4 on the Raman spectra can be understood as simply a super-
02

position of the vibrations of the host network and that of the SO,

groups. The modifications of the host network with preferential

formation of diborate groups tends to produce an expansion of the

network in order to accommodate the sulfate ions and facilitate

the lithium mobility.

The ion conductivity of lithium borate glasses has been

• addressed by developing a statistical mechanical theory of

conductivity based on the assumption that the dopant behaves as a

weak electrolyte which dissociates to provide free LiV ions and

* high ionic conductivity. The agreement between the theoretical

results and the experimental data is good for physically reason-
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able values of the parameters that characterize the theory.

Taking into account the Coulomb interactions between free Li

ions shows a distinct lowering of the conductivity, at least for

relatively low temperatures. This result arises from the Coulomb

interaction between free Li+ ions and the fact that at low

temperatures a given Li+ ion is slowed by its interaction with its

ion atmosphere.

Lithium motion in borate glasses has also been investigated

by far infrared spectroscopy and analyzed on the basis of a double

well model. This analysis shows that the characteristic

vibrational frequencies of the Li+ ion is distributed over a large

frequency range corresponding to different site configurations.

The extent of the frequency distribution is a function of the free

ion tacentration. A drastic decrease of the damping coefficient.

is observed when the concentration increases.

The potential barrier regulating the motion of LiV ions

between different site configurations also increases with

increasing Li+ ion concentration which corresponds to a decrease

of residence frequency and increase of residence relaxation time.

in summary the ex.erimental and theoretical results presented

here gives a fairly broad and clear picture of the main features

of both the matrix dynamics and the lithium free ion dynamics of

lithium doped borate glasses.

66



References

Permanent address: Laboratoire de Physique des Solides,

Univ'.site Pierre et Marie Curie, 4 place Jussieu, 75252

Paris Cedex 05, FRANCE.

1. M. Balkanski, R. F. Wallis, I. Darianian and J. Deppe, Mater.

Sci. Engin. Bi, 15 (1988).

2. M. Massot and M. Balkanski in Festschrift for Sir R. J.

Elliott edited by J. A. Blackman, Oxford University Press.

3. R. L. Mozzi and B. E. Warren, J. Appl. Crystallogr., 3 (1970)

251.

4. j. Goubeau and H. Keller, Z. Anorcj. Chem. 272 (1953) 303.

5. J. Krogh-Moe, Phys. Chem. Glasses, 6 (1965) 46.

6. G. E. Jellison, Jr., L. W. Panek, P. J. Bray and G. B. Rouse,

Jr., j. Chem Phys., 66 (1977) 802.

7. R. N. Sinclair, J. A. E. Desa, G. Etherington, P. A. V.

Johnson and A. C. Wright, J. Non-Cryst. Solids, 42 (1980)

107.

8. F. L Galeener, G. Lucovsky and J.C. Mikkelsen, Jr., Phys.

Rev. B, 22 (1980) 3983.

9. M. H. Brodsky, in M. Cardona (ed.), Light Scattering in

Solids, Springer, Berlin, 1975, p. 205.

10. L. A. Kristiansen and J. Krogh-Moe, Phys. Chem. Glasses, 10

(1968) 96.

11. F. t. Galeener, R. A. Barrio, E. Martinez and R. j. Elliott,

Phys. Rev. Lett., 53 (1984) 2429.

.2. F. L. Galeener and M. F. Thorpe, Phys. Rev. B3, 5802 (1983).

67



13. M. A. Kanehisa and R. J. Elliott, Mater. Sci. Eng.. B3 163

(1989).

14. P. N. Sen and M. F. thorpe, Phys. Rev. B15, 4030 (1977).

15. M. F. Thorpe and F. L. Galeener, Phys. Rev. B22, 3078 (1980).

16. J. Deppe, M. Balkanski and R. F. Wallis, Phys. Rev. B41, 7767

(1990).

17. W. M. Risen, Jr., J. Non-Crys. Sol. 77-27, 97 (1985).

18. M. Massot, E. Haro, M. Oueslati and 1. Balkanski, MRs

Symposium Proceedings (ed. by G. Nazri, R. A. Huggins and D.

F. Shriver) 135, 207, (1989).

19. P. J. Bray, S. A. Feller, J. E. Jellison, Jr. and Y. H. Yun,

J. Non-Cryst. Sol. 52, 45 (1982).

20. T. W. Brill, Phillips Research Rep., Suppl. 2 (1976).

21. N. Massot, C. Julien and M. Balkanski, Infrared Phys., 25,

775 (1989).

22-. D. Kline and J. P. Bray, Physics and Chemistry of Glasses 7,

41 (1966).

23. E. Cazanelli and R. Fresh, J. Chem. Phys. 79, 2615 (1983).

24. C. Julien, M. Massot, M. Balkanski, A. Krol and W.

• Nazarewicz, Mater. Sci. Engin. B3, 307 (1990).

25. M. Balkanski, R. F. Wallis, I. Darianian and J. Deppe, Mater.

Sci. Eng. B1, 15 (1988).

26. A. B. Lidiard, Phys. Rev. 94 (1954) 29.

27. L. Pauling, The Nature of the Chemical Bond, Cornell

University Press, Ithaca, NY, 2nd edn., 1940.

28. . Seitz, Rev. Mod. Phys.. 26, 7 (1954).

29. M. Balkanski, R. F. Wallis and J. Deppe, Mater. Sci. Eng. B3,

68



65 (1989).

30. M4. Balkanski, Spectroscopic investigations of glasses in

"Science and Technology of Fast Ion Conduction,"1 ed by H. L.

Tuller and M. Balkanski, NATO ASI series (Plenum 1988).

31. P. J. Bray, J. Noncryst. Solids 73, 19 (1985).

32. W. R. Schneider and S. Strissler, Z. Phys. B27, 357 (1977).

S6



B. Effect of Intercalated Lithium on the Direct Band

Gaps of Indium Selenide

P. Gomes da Costa, M. Balkanski* and R. F. Wallis

Physics Department, University of California, Irvine, CA 92717

Abstract

The effect of intercalated lithium on the 6- and 7-polytypes

of InSe has been investigated using a tight-binding method. The

energy bands of the pure polytypes were calculated and the

results compared with previous work. The tight-binding

parameters associated with intercalated lithium atoms were

obtained using tabulated atomic functions. The modifications of

the energy bands and Fermi level produced by the introduction of

one lithium atom per unit cell were calculated for the lowest

potential energy position of the lithium atom in the Van der

Waals gap between layers. The intercalation induced changes in

the smallest and next-to-smallest direct band gaps were deter-

mined and compared with experimental data.
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1. Introduction

The insertion of lithium into layered materials has

attracted significant interest as a consequence of the possible

use of such materials as electron exchange electrodes in solid

state-batteries. Such an application is related to the inter-

calation capacity and the modifications of the electronic

properties of the bulk material. Intercalated InSe (I ) gives a

voltage of 2.6V against a lithium anode and exhibits a change in

conductivity of up to two orders of magnitude.(2)

InSe is a l.yered material consisting of two-dimensional

Se-In-In-Se layers between which the binding is weak due to the

Van der Waals forces. The space between successive layers is

known as a Van der Waals gap. The stacking of the layers is

always compact, but there are four possible stacking arrangements

leading to the four polytypes p, el, Y, and 6. Only three of

these polytypes (B, e, y) have been observed for InSe. Bridgeman

grown crystals are generally of the type 7. The difference in

total energy between the various polytypes is so small that one

practically always finds a high density of stacking faults in a

given sample.

Although most of the experimental results that have been

obtained are for 7-InSe, no band structure calculations are

available in the literature for this polytype. All existing

calculations are for the 0 and c polytypes which have a simpler

first Brillouin zone. The first band structure calculation for

this family of materials was made for GaSe.( 3) A calculation for

InSe within a tight-binding model has been carried out in a two-
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dimensional approximation.(4) Extensions to the three-

dimensional case have been developed using the pseudopotential

method (5) and the tight-binding method.(6) Including the spin-

orbit interaction in the tight-binding calculation(7 ) has a non-

negligible effect on the InSe band structure. Pseudopotential

calculations for c-InSe are also available,(8) but without spin-

orbit interaction.

Lithium insertion(9'1 0) in InSe has been shown to affect

both the electronic and optical properties. Possible inter-

stitial sites for Li atoms in 7-InSe have been discussed and

their relative energies determined.(11 ) Lithium diffusion

paths( 12) in 7-InSe have also been determined by ab initio

calculations.

Lithium insertion(9 ,10) in InSe has been shown to affect

both the electronic and optical properties. Possible inter-

stitial sites for Li atoms in I-InSe have been discussed and

their relative energies determined.(" l) Lithium diffusion

paths( 12) in 7-InSe have also been determined by ab initio

calculations.

The optical properties near the band edges of pure InSe have

been investigated and compared with the calculated band

structure.(7) Sharp excitonic peaks are obse.ved in the

absorption spectrum at low temperature corresponding to the three

absorption thresholds. The first threshold at 1.3 eV is related

to the direct absorption between the s, pz valence band states

and s conduction band states. The second at 2.5 eV is related to

transitions from px, Py valence band states to s conduction band

72



states, and the third at 2.9 eV is related to transitions from

the spin-orbit split-off valence band to the s conduction nd.

More recent results (13) on pure InSe at 1OK with the electric

vector of the radiation perpendicular to the c-axis allow one to

distinguish the n=l and n=2 excitonic transitions as well as the

LO phonon replicas of the n=l excitonic state.

The effect of Li insertion on the interband optical

absorption peaks is rather weak, but nevertheless, clearly

observable. In Fig. 1 are shown the shifts in frequency of the

smallest direct band gap E1 and the next-to-smallest band gap E2

as functions of the lithium content. (1 0) We see that the E1 gap

increases in frequency as the Li concentration increases, whereas

the E2 gap decreases in frequency.

The excitonic transitions persist after Li insertion, which

suggests that all of the Li 2s electrons do not transfer to the

conduction band and th!ns transform the semiconducting InSe into a

metal.( 14 ,15) If we had a metallic transition, the Coulomb

interaction between the electron and hole of the exciton would

be screened and the excitonic state would be washed out. The

persistence of the excitonic transitions in highly intercalated

InSe suggests that the Li 2s electrons form a low mobility

impurity band or are efficiently trapped into localized states.

The photoluminescence spectrum of InSe is significantly

* modified by the intercalation of L. A new photoluminescence

peak appears at a photon energy somewhat less than that of the

fundamental exciton peak of pure InSe as shown in Fig. 2. This

• new peak may be associated with the Li-2s band lying in the
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fundamental gap of InSe.

Theoretical Development

We have developed a tight-binding scheme for calculating the

electronic band structure of both p- and 7-InSe. Our procedure

is based on the overlap-reduced semi-empirical tight-binding

method of Doni et al.( 16) who considered the case of p-InSe.

The Slater-Koster procedure (17) was used to express the overlap

and interaction integrals of the tight binding method in terms of

the basic overlap integrals Sij and interaction integrals Vij.

Only two-center integrals were considered.

For 6-InSe we took the values of the parameters Sij and Vij

from the tabulation in Doni et al. for the nearest-neighbor

In-In, In-Se, and Se-Se interactions both parallel and perpen-

dicular to the c-axis. The atomic states considered are Se 4s

and 4p and In 5s and 5p whose energies were taken from Doni et

al. We also used the crystal field parameters K tabulated by

Doni et al. Interactions beyond nearest neighbors were included

by scaling the Doni parameters with a factor d-2 where d is the

interatomic distance of the interacting atoms. The interactions

were cut off at d=8.77A.

The structure of 7-InSe is simpler than that of 6-InSe,

because the former has only four atoms per unit cell, whereas the

latter has eight atoms. The difference in structure arises from

the difference in stacking of successive layers; the interatomic

distances within a layer are essentially the same in both poly-

types. In view of these similarities, we have taken the basic

overlap and interaction parameters for 7-InSe to be the same as
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those given by Doni et al. with the exception of the interlayer

parameters SSeSe (ppa) and V sese(ppa). These parameters

together with the crystal field parameters K(In 5s), K(Se Px)'

K(Se py), and K(Se Pz) were varied in order to reproduce the

experimental values of the smallest band gap E1 and the next-to-

smallest band gap E2 . The values thus obtained are tabulated in

Table I.

Having established the tight-binding scheme for the pure j-

and 7-polytypes of InSe, we then proceeded to generalize the

scheme to include the presence of intercalated Li atoms. We

assume that the Li atoms occupy the sites of lowest potential

energy(12) (the A3 -2 sites) in the Van der Waals gap between

layers. Since intercalation of lithium leads to only a very

small increase in the interlayer spacing, we have neglected any

change in the tight-binding parameters of InSe itself. The

overlap and interaction parameter for the interaction of a Li

atom with the nearest Se and In atoms were calculated using the

tabulated atomic functions of Clementi and Roetti.(18) The

electronic band structure of the intercalated InSe was then

obtained by diagonalizing the Hamiltonian matrix. The changes in

the E, and E2 gaps thus obtained turned out to be large. The Li

parameters were then varied until agreement was achieved between

the theoretical and experimental gaps. The resultant values for

the Li parameters are listed in Table II.

Numerical Results

The electronic band structure of pure 2-InSe which we have

obtained is shown in Fig. 3 for variouS directionsin the first
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TABLE I. Values of the tight-binding parameters for y-Inse. The

* notation is that of Ref. 16. Vand J are in-Rydibergs.

Se-Se interlayer parameters crystal field parameters

S(ppa) -0.010 K(Se 4p. 0.0203

V(ppa) 0.002 K(Se 4pz) 0.1143

K(In 5s) -0.0373

TABLE II. Values of the tight-binding parameters for lithium-

intercalated -y-InSe. Vand K are in Rydbergs.

S VK

Li-Se (ssa) 0.02636 -0.000318

Li-Se (spa) -0.0077 0.0027

*Li-In (ssa) 0.004143 -0.000313

Li-In (spa) -0.04665 0.000669

Li (2s) -- 0.066
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Brillouin zone. The smallest direct gap (E,) occurs at r between

the s, Pz valence band and the s conduction band. The next lower

direct gap (E2) occurs at r between the px py valence band and

the s conduction band.

For the case of pureP-InSe, we plot our results for the

band structure in Fig. 4.: These results are very similar to those

of Doni et al. In particular, both sets of results give an

indirect gap between r and M that is somewhat smaller than the

direct E1 gap at r.

In Fig. 5 we present the band structure for lithium-

intercalated 7-InSe with the composition Li0 .5 InSe and the Li

atoms occupying the A3_ 2 sites in the Van der Waals gap between

layers. The band associated with the Li 2s state is seen to lie

just below the conduction band edge. The effect of the

intercalated lithium on the InSe bands is too small to be observ-

able on the scale of the figure. However, the effects on the E,

and E2 gaps are revealed by the numerical results given in

Table IL, The excellent agreement between the experimental and

theoretical values is a direct consequence of the choice of the

Li parameters.

The occurrence of the Li-2s band in the fundamental gap of

InSe provides a natural explanation for the new photoluminescence

peak produced by Li insertion. Excitation with photons having

energy greater than the band gap creates electron-hole pairs. An
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Table III. Values of the Eland E2 energy gaps--with-and-

* without lithium intercalation in I-InSe.

pure -'-InSe lithium-intercalated- y-InSe

El 1.3335 eV 1-3368 eV

E22-.5451 2,539
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electron in the Li-2s band can then recombine with a hole

-accompanied by the emission of a photon whose energy is equal to

the difference between the valence band edge and the lower edge

of the Li-2s band.

Conclusions

A tight-binding scheme has been developed for-pure #-InSe

and 7-InSe using the overlap-reduced semi-empirical method the

procedure satisfactorily accounts for the direct energy gaps of

the two polytypes. The tight-binding scheme has been generalized

to include the effect of intercalated lithium atoms. The shifts

in the direct gaps and the-appearance of a new peak in the photo-

luminescence spectrum predicted by the calculations are in

agreement with -experimental optical data.
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C. Lattice Dynamics of y-InSe Containing

Intercalated Lithium

P. Gomes da Costa, M. Balkanski,* and R. F. Wallis

Department of Physics and Institute for Surface and

Interface Science

University of California, Irvine, CA 92717

ABSTRACT

The lattice dynamics of the y-polytype of
the layer compound InSe has been investigated
using a model containing short-range central
forces and long-range Coulomb interactions.
The normal mode frequencies and eigenvectors
were determined by diagonalizing the
dynamical matrix. The results have been
correlated with the infrared and.Raman
spectra of y-InSe. The effect of

intercalated lithium atoms on the vibrational
modes -has been investigated both
theoretically and with the aid of Raman
spectra.

1. INTRODUCTION

in a number of solid state batteries currently under

investigation, layered materials are used as electron

exchange electrodes, since they can accommodate considerable

amounts of intercalated lithium. For such an application it

is essential that the electrode material have a sufficiently

high ionic as well as electronic conductivity. A material

*that satisfies these requirements is InSe which can

intercalate relatively large amounts of lithium with only a

slight expansion of its lattice (1,21.

InSe is a layered compound having complex layers in

* which atomic layers of Se, In, In, and Se are bcund together
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by covalent bonds with some ionic character. These complex

layers are themselves bound- to one another by, weak Van der

Waals interactions with a so-called Van der Waals gap

between layers. -There are four possible stacking

arrangements of the complex layers leading to four polytypes

designated 3,Ey, -and 8. Since the experimental results to

be discussed are for the r-polytype, we shall focus our

attention on this polytype.

A microscopic understanding of both the electronic and

ionic conductivity of lithium-intercalated y-InSe requires a

knowledge of the lattice dynamics of this system. Of

particular importance is information- concerning the forces

of interaction between- intercalated lithium atoms and nearby

selenium and indium atoms.

In this paper we present the results of a theoretical

investigation of the lattice dynamics of y-InSe both with

and without intercalated lithium. We develop the lattice

dynamical model in section 2. The values of the force

constants and calculated phonon dispersion curves for pure

y-InSe are presented in section 3. Similar results are

presented in section 4 for lithium intercalated y-InSe.

Conclusions are presented in section 5.

2. LATTICE DYNAMICAL MODEL

The first step in setting up the lattice dynamical

model is to summarize the pertinent information concerning

the structure of InSe. The y-polytype belongs to the

trigonal system, and its space group is C5  The primitive

translation vectors can be written as (31

= 3 /3)aji+ c. (la)
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t2= +-( /6)a+(1]2)ao+:c,,k (+ib)

3= -(43 /6)a,'i -(1 / 2)aj + ck(

where a0 is the lattice constant parallel to the layers, co
is the lattice constant perpendicular to the layers, and

_,, are unit vectors in the x, y, z directions,

respectively. The values of ao and co are (4] 4.00 A and

8.44 A respectively.

The primitive translation vectors of the reciprocal

lattice can be obtained from t,, 2,13 and are found to be

= k2[(2-1 .q3ao)I + ( c)7
(2a)

b3- = 27[-(1 /- ja,)7 + (11 a°)7 + (1/ 3c,)k] (2b)

b3 = 21r[-( /"3"a,,) - (1:/ao)7-t-(1 /3c0 )k']
- (2c-)

Diagrams of the stacking of the layers of y-InSe and its

first Brillouin zone are shown in Fig. 1.

Since inSe is a polar semiconductor, the chemical bonds
which bind neighboring atoms together have both covalent and

ionic character. The interatomic forces should, therefore,

have a short-range part associated with the covalent

character of the bonds and a long-range Coulomb part

associated with the ionic character of the bonds. We

therefore write an element of the force constant matrix
* cI(/r;'K) as the sum of two c6ntributions,

d (lt,1 , -') = (f I~t¢;88) + I(lic; P') (3)

0
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A

(a)

* (b)

Fig. 1 (a) Stacking of layers and (b) first Brillouin

zone of 7-InSe. In (a) the open circles are Se atoms and

* the closed circles are In atoms.

where (c(/ K') is the contribution from the long-range

Coulomb interactions, V(I-cI'K) is the contribution from

* short-range non-Coulomb interactions, the index pair 1K

designates the Xth atom in the Ith unit cell, and a,# denote

Cartesian coordinate components.

For the non-Coulomb interactions we adopted the

* central-potential model which Polian [5] found satisfactory

for the related material GaS. With a central potential 9(r)

dependent only on che distance r between the interacting

atoms, one can write the contribution to X3v(IK;I'K') for

* Ih#I'K' in the form
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S5

aIft~'K)=~00 1, ' (4)-

where

.. x X ,,1(l ;l )= - -,: (r)--(o' (r) ] + r q"'. ( r)r } i,=l i~fr:V' )l ' 1)

2~r 1 +( ) Y(/' !(K)' 1 (5)Y

X))

1(Ir)- is the position -vector of atom lI in the equilibrium

configuration, and primes denote differentiation with

respect to araument. A given interaction consequently

involVes two force constant parameters, T.-,(r) and ' (r)/r,

which- will henceforth be designated by A and B,-

respectively.

The short-range model employed includes the following

interactions:

1. in-In first neighbors

2. In-Se first neighbors

3. Se-Se interlayer

-4. In-In second neighbors

5. In-Se second neighbors

The corresponding values of A and B are designated by A., Bi

with i = !1,2,3,4,5.

The long-range Coulomb interactions are characterized

by the effective-charges of the In and Se ions. Since the

in-Se bond is partly ionic and partly covalent, we expect

the magnitudes of the -effective charges to be less than the

magnitude of the electron charge. From the symmetry and

stoichiometry of y-InSe and electroneutrality, we conclude

that the effective charges of the In and Se ions are equal

in magnitude and opposite in sign. The large anisotropy of
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the crystal leads us to- introduce a tensorial effective
charge of the -form (5]

*z*e=[ 40 z, e (7)

This form- for the effective charge accounts for the -fact

that the polarization produced by displacements parallel to

the layers is different from that produced by displacements

-perpendicular-to the layers.

The contribution of the long-range Coulomb interactions

to the force constant matrix was evaluated-using the Ewald

-technique by expressing the -elements -of this matrix in terms

of a sum over-the direct lattice and a sum over the

-recibroca lattice. The elements of the Coulomb

contribution to the dynamical- matrix D;(k;Kie) were then

-obtained using, the- relation

Dc( K'_- -C(e 'Ie(8)

where Mr is the mass of atom X. The contribution of the

sum over the direct lattice to D (;xK':) is given by

+e re,,ee X HH[ (; X')]9)
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where e- is the -effective charge component of ion K given

by ze, -7 was taken to have the va-lue 7r, r is the

equilibrium -nearest-neighbor separation-,

and

The reduced effective charge componients zt and zs, satisfy

zs~ = Z, 0 =z: with z4 specified by Eq. (7)- -- i.e.,
H.0 I;and ]=z

* The contribution of the sum over the reciprocal lattice
tO , is given by

D ';: , 7  " ) -- ' r'a .,.k~ka . -k2 14,-

92
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GaG0 e ~ I,23(~i,~ -2. (e2)

-where: the -reciprocal lattice vectors -G are given -by

~+n b.+mb 3  (13)

-and ini 2  3are integers.

The full -Coulombm cont-ribut-ion to the -dynamical matrix.

-is given b--y

*-Dc(,, K) =-D-k; r' + D(k;-K '~),,-4

-Addinrg- this result to -the short.-range cont-ribution t-6 the-

dynamical matrix_ Dap(KKr1), where

yield- the -full -dynamiical matrix D

The-n6rinal M-ode-freauencies and-eigezivectors were obtained

by diag onal-izing- the full dynamical ifatrix-.

3. MODEL PARAMETERS AND PHONON DISPERSION CURVES FOR PURE

-?-InSe

The cenmtral1 poteiftial1 model -which- we -employ con'tains

twelve -parameters to -be determined: A-, _.- AS, B1 , .;.5

z 1 , 2.The -experimental data that are available for -ne
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namely iraed and- Rama spect-ra, -are insufficintto- -make

a -unique determination of these parameters-- We -have

_E A

(2,) I

E(x~y)

-WTO 177:5 ce' a&yzgcn'1

WLOAk 211tL *199.5cm'-

(3 M) A-)

1(4)- A(4

g -. 2 Zone center normal modes and their corresooncd.na
freduencies for :re- -nSe.

theef~etaen as~sartn pint the values of the

*corresponding armts for GaS obta-ifed by ?oliLan (5) by

fEittiL4ng phononI- dispersion- curves (detemnd- -by !;inelasti-:-c

neutron-scatter-ing),j elastic constants-- and- infrared and
RaMa daa. We then- ffinew-ntuned t#--he values O-f the -Parameer

*by adjusti,'-ng them to renroduce the frdauencies and

polarizatilons-of the--optidal modes of Iona wavelehgth

derkived fr*om infrared and- :Raman data for 7-InSe (6) whi--ch

are presented-inrg 2. The values of' the- model parameters

-thus determined are given in Table i.
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Table 1. Short-range and Coulomb parameters for y-InSe.

The units for the A and B parameters are N/m.

i 1 2 3 4 5

A, 78.35 32.17 0.5 7.0 3.4

B 4.65 31.0 -0.196 -8.584 0.9

z; 0.71 0.43 ........ --- --

The elements of the dynamical matrix were next

evaluated using the tabulated values of the model

narameters. Diagonalization of the dynamical matrix for

various values of the wave vector k yielded the normal mode

frequencies and eigenvectors. The dispersion curves were

constructed for several high symmetry directions in the

Brillouin zone and are presented in Fig. 3. Since there are

four atoms per primitive unit cell in y-InSe, there ai.

.240 .. .. .. 240 ..... .,.-, .

IE

Z 160 1160
W-

n 120 120

80 80

40 40
0z

-IoI o

A r B r Z
REDUCED WAVE VECTOR

* Fig. 3 Phonon dispersion curves for pure y-InSe.
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twelve normal modes for a given value of k. There is

considerable dispersion of the normal modes propagating in

directions not perpendicular to the layers as a consequence

of the strong intra-layer binding of the atoms. However,

the weak interlayer binding (note the small values of A3 and

B3 in Table 1) leads to nearly flat dispersion curves in the

direction perpendicular to the layers, as evident in Fig. 3

for the rZ direction.

4. MODEL PARAMETERS AND PHONON DISPERSION CURVES FOR

LITHIUM INTERCALATED y-InSe

The intercalation of lithium into y-InSe leads to new

peaks (6] in the Raman spectrum at 92 cm-1 and 388 cm-1 . In

addition, peaks associated with pure y-InSe are modified by

plasmon-phonon coupling (6]. We have made a theoretical

investigation of the case in which there is one lithium atom

per primitive unit cell and that atom occupies a site of

lowest potential energy (A3-2 site [7]) in the Van der Waals

gap between layers. we assume that there are central

potential interactions between the lithium atom and the

nearest selenium and indium atoms with interaction

parameters A61 ]B6 and A7 ,B7, respectively. Since we have

only two new normal mode frequencies and since B is

typically small compared to A, we have neglected B6 and B7

and determined A6 and A7 by associating the frequencies 92

cm-1 and 388 cm-1 with normal modes dominated by lithium

atom motion parallel and perpendicular to the layers,

respectively. The resulting values for A6 and A7 are 1.61

N/m and 54.8 N/m, respectively. The large value of A7

relative to that of A6 is consistent with the facts that the

indium atomic radius (0.76A) is larger than that of selenium

(0.60A) [8] and that a lithium atom in the A3-2 site lies
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directly above the indium atom to which it is coupled. The

restoring force on the lithium atom is therefore dominated

by A7 in the mode in which the lithium atom moves

perpendicular to the layers (0)=388 cm-1 ) and by A6 in the

mode in which the lithium atom moves parallel to the layers

(0=92 cm-!.)

After incorporating the force constants A6 and A7 into

the dynamical matrix, we calculated the normal mode

frequencies and eigenvectors as functions of the wave vector

E for Li0 .5 InSe. The dispersion curves thus obtained are

plotted in Fig. 4. We note that the normal modes primarily

400 .. . . . 400

E 350 350

-300 300
z
W
=D 250 250

200 "- 200 ,
0 150150
00

X 50 50
0z

00
-1 0 1 0 1
A r B r z
REDUCED WAVE VECTOR

Fig. 4 Phonon dispersion curves for lithium intercalated

* y-InSe.
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associated with the InSe lattice are little affected by the

presence of the lithium, since the mass of a lithium atom is

much smaller than those of indium and selenium atoms. The

normal modes primarily associated with lithium atom motion

at 92 cm-1 and 388 cm- I are essentially flat as a result of

the weak Li-Se coupling and the lack of coupling between

lithium atoms in different unit cells.

5. CONCLUSIONS

A lattice dynamical model has been developed for both

pure and lithium-doped y-InSe. The model contains short-

range and Coulomb interactions. Phonon dispersion curves

have been calculated for both the intercalated and non-

intercalated cases. The results are consistent with

observed infrared and Raman data.
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D. Molecular Dynamics Study of the Lattice Vibration
Contribution to the Frequency-Dependent Dielectric Constant

of Lithium Iodide

J. Deppe', M. Balkanski", R. F. Wallis and A. R. McGurn +

Physics Department, University of California, Irvine
Irvine, California 92717

Abstract

A molecular dynamics simulation has been performed on the crystal lithium
iodide, LiI. A rigid ion potential is used with parameters fit to thermal ex-
pansion, isothermal compressibility, lattice energy and the frequency of the
transverse optical mode at the zone center. The current-current correlation
function has been calculated at T = 200K and 400K, and from this the
absorption and dispersion have been obtained. Anharmonic broadening is ob-
served at the higher temperature. In addition, the mean square displacements
of the two ions, and the radial distribution function are calculated.
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1. Introduction

Lattice dynamics calculations on ionic crystals are beset by a number of interesting

theoretical problems. The most evident problems which distinguish the study of ionic

crystals involve the proper treatment of the long range Coulomb interactions between

ions. This difficulty has been studied over a period of many decades and significant

advances in the handling of the long range Couloumb interaction have been made by

Ewald'. Born2 and other workers as we shall detail below. In addition to these long

range electrostatic effects, atomic polarization effects in ionic solids have been treated

by Dick and Overhauser3, Hardy4, and Karo and Hardys using shell and deformation

dipole models, respectively. The successful description of the lattice dynamics of the

lithium halides, however, is still hampered by problems peculiar to these particular

ionic compounds. These problems include: 1) the large non-central interactions which

are inferred from deviations from the Cauchy relation, c12 = c44, and which in LiF6 ,

has the value of C12 - c44 = -2.25 x 10dyn/cm2, the largest of all the alkali halides;

2) the importance of next nearest neighbor short-range interactions due to the small

size of the lithium atom; and 3) the large anharmonic contributions, especially for the

* heavier halide salts. In an attempt to address a solution to 1) through 3) above, Verma

and Singh7 found it necessary to employ a modified shell model which included 3-body

interactionss to calculate the phonon dispersion relations of the lithium halides. Along

* the lines of Ref. 7, Rastogi et a19 used a similar model to calculate the phonon dispersion

relations and the anharmonic properties of the lithium halides. Their calculation of the

real and imaginary parts of the self-energy shift at w = 0 and w' = wTO indicates that
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the anharmonic contributions increase substantially ,vith increasing halide size. An

important conclusion of their work was that the perturbation approach employed was

legitimate for lithium iodide up to 150K, whichi we believe (see below) is comparable

to or less than OD(LiI).

In this paper, we investigate the temp.rature dependence of the infrared lattice

vibration absorption of crystalline lithium iodide. We have modified a rigid ion model

first proposed by Michielsen et al."° Although computer resources have now reached the

stage such that more sophisticated potentials, i.e. 3-body interactions"1 and explicit

polarization terms 2 , can be employed, the use of a central force interaction potential

is justified in this case by the extremely small deviation from Cauchy behavior for

lithium iodide13; (C,2 - c44)/(cI 2 + c44) = 0.005. In addition, although polarization

certainly affects the dynamical properties of this crystal, the transverse optical mode

at k = 0, which is the mode we will be probing, is not affected to a large extent.

We are left with the large anharmonicity, which can be handled nonperturbatively

by the molecular dynamics method. The molecular dynamics simulation is suitable

for investigating thermodynamic and dynamic properties of materials. It has been

successfully applied to fast ion conduction and defect diffusion in crystalline solids 14.1s5

structural investigations' 6.1 and vibrational studies18 of amorphous solids, and studies

of correlated motion of atoms in liquids' 9. One of the main reasons the use of this

method has become so widespread is the ease with which results may be compared with

experimental data. In principle, any experimentally measurable quantity can also be

extracted from the molecular dynamics results. In the present treatment, the frequency
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and temperature dependent conductivity (which is measured in the laboratory), and

0 from this the dielectric function, is directly obtained from the current-current correlation

function. We have calculated these quantities at two temperatures, 200K which we

argue is on the order of the Debye temperature for this material, and 400K, at which we

* see large anharmonic broadening in the correlation functions. Lowndes20 has measured

the transverse optical frequency wTO using far infrared transmission through ultra thin

films at T = 5K and T = T,.. However, we have not uncovered a measurement of

the temperature dependent broadening with which we can compare our results. Other

properties that we have calculated are the radial distribution function and mean square

displacements of the ions.

The remaiuder of the paper follows the following outline. In section 2, the crystal

structure and relevant properties of LiI are reviewed. In section 3 we give the potential

to be used in this simulation, a variation on one first used by Michielsen et al ° . The

assumptions and constraints inherent in the model will be enumerated. The equations

of motion and simulation parameters, such as the timestep, numerical tolerances and

temperatures investigated are also given. In addition the determination of the corre-

lation functions, radial distribution function and mean square displacement function is
0 discussed. In section 4. results are presented for two different temperatures, allowing

an estimation of the magnitude of anharmonic effects. Finally, in the last section are

presented conclusions and suggestions for future study.

0
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2. Properties of LiI

Lithium iodide crystallizes in the NaC structure. The bravais lattice is face-centered

cubic; the basis consists of one Li atom and one I atom separated by one-half the body

diagonal of the conventional unit cell. Each atom has six nearest neighbors of the op-

posite species. The reciprocal lattice vectors for an fcc lattice are given by the primitive

translation vectors of a body-centered cubic lattice. The nearest neighbor distance is

rn = 3.001 at room temperature 1 , and the cube edge has length a = 2r.,. There is a

relative lack of experimental and theoretical work on this crystal; the former is possibly

due to the fact that the solid is extremely hygroscopic. We have uncovered experimental

data on the melting temperature 0 , thermal expansion and isothermal compressibility 22,

the high frequency dielectric constant20 , and lattice energy10 . The transverse optical

frequency at the zone center 2° has been determined using far infrared transmission mea-

surements through ultra thin films; however, the variation of the absorption peak with

temperature has not been discussed to our knowledge. A measurement of the elastic

constants 13 has yielded c12 ; c44, indicating that a central force approximation may be

a very good one. The other lithium halides, in contrast, show large devi.tions between

c12 and C44 ; the difference for LiF is the largest of all the alkali halid.es. There has also

been a measurement of the ionic conductivity of LiI.23 The study of ionic conductivity

in the alkali halides has a long history and is known to occur almost exclusively through

the diffusion of positive ion vacancies24. These vacancies arise either through thermal

activation, leading to pairs of positive and negative ion vacancies known as Schottky

pairs, or as a result of doping. In our case, there are no defects due to doping, and
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TABLE I: Value of the Debye temperature for some alkali iodide compounds.
Substance O GD I

Nal j164KI
KI 132K1

RbI 103KI

diffusion would be due entirely to Schottky pairs. However, it can be expected that,

although ionic diffusion will be quite small in the solid phase of LiI without the intro-

duction of impurities or defects, at temperatures not too far below the melting point

the lithium may indeed be able to diffuse through interstitial hopping. The iodine ion is

huge in comparison to the lithium ion, and may, in effect, leave large channels through

which the lithium can move. In the former case of diffusion by Schottky defects, the

* mobilitv activation energy and defect formation activation energy have been measured

bv Jackson and Young23 to be 0.43 and 1.06eV respectively.

The crystal is single phased throughout the temperature range up to its melting

point, which is 742K. Although we have been unable to find a value for its Debve

temperature, it can perhaps be estimated by considering the value of this quantity for

the other alkali halides. In Table I, we list the Debye temperature for three alkali-

iodides 25 ' 8 . By simply extrapolating this data to lithium iodide, we might therefore

expect that the value of 0OD is of the order of 200K. An analysis which takes into

account the variation in sound speed and lattice spacing indicates that OD(LiI) may be

somewhat lower, on the order of 160K.
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3. Theory

3.1 Interatomic potential

In this work, we have chosen a modified version of an interatomic potential proposed

by Michielsen et a11° . The largest term in the potential, in terms of its contribution to

the ground state energy, is unambiguously defined, since Lii is an ionic crystal. The

Coulomb energy for this solid is found to account for 90% of the total potential energy,

as is typical for all the alkali halides. A modified Born-Mayer term is used for the short

range repulsive term. In addition, dipole-dipole and quadrupole-dipole attractive terms

and a hard core repulsive term are included. The pair potential is given by,

() z'ze 2  b - d, .
(+ -ep(-k(r;j- rijo))- SL- j -r,(

where

rij = separation of atoms i and j,

*i = valence of atom i.

rip =sum of ionic radii27

cjj =coefficient of dipole-dipole interaction.

dij =coefficient of dipole-quadrupole interaction.

ej =coefficient of hard core repulsion.

b, k =parameters fit to thermal expansion and isothermal compressibility.

We can express the total potential energy V(r) as

V(r) Ae 2  b - - cj dij (2)1

+ -[- - r I
4~- -r- t 6
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where A is the Madelung constant, N is the number of -. it cells, r is the nearest

neighbor distance, and it is understood that the sum does not include the term i = j.

We have used the method of Sangster and Dixon 28 in the evaluation of the long-range

Coulomb term with the Ewald summation technique.

There are two pareemeters in this potential, both in the modified Born-Mayer term,

which are fit to experimental data: the prefactor b, and the inverse decay length k. We

may determine these parameters by considering the following two expressions 29 which

relate derivatives of the potential at non-zero temperature to thermodynamic quantities,

r -Ta), (4)

where P is the energy density, ro is the equilibrium lattice constant, a is the thermal

expansion coefficient, 1 is the isothermal compressibility and VM is the volume per

molecule.

The following are experimental values for the lattice energy U, thermal expansion

* coefficient, the isothermal compressibility and two of it's derivatives,

-U = 754.3kJ, 0  (5)

a = 16.7 x 10-"K-', 2

13 = 5.83 x O-m 2 N- 1,22

1,013

( = 37.3 x lO 1 1 m2/N,

8
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1,0,

5 x 10-4K-', 30

WTO = 2.7 x 1013rads- 20

We desire that the potential energy satisfy the following objectives: reproduce the

lattice energy of the crystal; reproduce the frequency of the TO mode at the zone center;

lead to the satisfaction of Eqs. (3) and (4). In addition, we of course require that the

ions be repulsed as they approach each other, and this sets rather stringent limits on

the hard core term eilj/r?.

We fit the quantities listed above with the following parameters: the magnitude of.

the prefactor to the Pauli repulsion, b; the decay constant k; and the magnitudes of

the dipole interactions. The strength of the hard core repulsion between the atoms

eij is in effect fixed. This last statement is true because the repulsion must be strong

enough to prevent a double well from developing between ions (these arising from the

Coulomb attraction and possibly the dipole interactions), and must be small enough to

keep the hard core deep. We have chosen to vary the strength of the dipole interactions

from the values given by Ladd 31 because the frequency of the TO mode at " = 0

is considerably less than what this model predicts, and the very large coefficients of

the dipole interactions are the only parameters which can be varied without adversely

affecting the lattice energy and/or the two thermodynamic relations, Eqs. (3) and (4).

The procedure is the following; first the lattice spacing is set to 3A at room tem-

perature, then we adjusted the b and k to satisfy the thermodynamic relations given

in Eqs. (3) and (4). It should be noted that these relations are not very sensitive to

the c,, and dij. The TO frequency is then calculated, we then adjust the cj and di2,

108



TABLE II: Values of the parameters used in LiI calculations, in addition. k = 1.1 x lO'm-',b =
2.8 x 1O-5SJm

4

Li-I Li-Li I-I

rio(A) 3.00 0.95 2.05
cji/10-"(Y- m') 25.0 8.54 266.0
dq 1/10 99(J - in') 114. 36.8 1000.0
eii/10-0(J - m)] 6.5 10.0 400.01

re-determine b and k, following the same steps until the TO frequency is close to the

experimental value 2.7 x lO1 3rad-s -1 . Finally, the eqi are adjusted to ensure that there

is no attraction between the ions as they approach closer than 3,.

We find the lattice energy to be U = 725kJ, within 5% of the experimental value

of 754kJ, Eq. (5). In addition the calculated TO frequency is ; 3.1 X 1013 rad - s - 1,

within 10% of the experimental value of 2.7 x 1013 rad- s - 1. The expressions involving

the first and second derivatives of the potential are fit exactly at room temperature,

and within 5% error at all others. We have varied only the lattice constant as a function

of temperature, leaving one parameter and two equations to be fit. This has been done

by splitting the difference between the results from the two equations.

We have found that restricting the short range interactions to the second nearest

neighbors, as has been done often in the past, is insufficient here. Neglecting terms

beyond second neighbors was found to result in a 5% discrepancy compared to the

result including their contribution. Therefore, all atoms out to the tenth neighbors are

included in this part of the calculation. The values of the parameters used are listed in

Table II.

There are certain defects inherent in such a model. Among them are:
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1) Tunneling effects, which may well be important considering how small the lithium

ion is, and the importance of interstitial diffusion in this system, are neglected.

2) The potential is that of a rigid ion model, so there are no polarization effects

present. We are interested in the response at the transverse optical (TO) frequency,

* however, which is not affected to the same extent that the longitudinal optical (LO)

mode is. Although simulations have been successfully performed using rigid ion models

for extremely polarizable materials in the past3 2 '33 , (AgI), it would be very desirable to

do a molecular dynamics simulation using a shell model potential on this system.

3) Since the parameters of the potential are fit to low temperature experimental

data for which the harmonic approximation gives a complete description of the system

* dynamics, the potential is only accurate near the minimum of the potential energy; we

therefore might expect problems at very high temperatures, i.e. in the liquid phase.

We note here that the original potential used in Ref. 10 did not have the hard wall

repulsion and therefore did not prohibit pairs of ions from collapsing on themselves. This

difficulty is only critical at very high temperatures, where the model crystal is entirely

unstable. The absence of a repulsive term in the potential that can counterbalance the

Van der Waals terms at small separations leads to a collapse of the pair.

3.2 Equations of Motion

We treat a crystal supercell in the form of a cube containing 216 atoms. Periodic

0 boundary conditions are imposed. The classical system of equations to be solved -on-

sists of 216 x 3 = 648 coupled differential equations, 3 (corresponding to the cartesian

directions) for each of the 216 atoms. The long-range Coulomb force couples atoms at
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all distances and is handled by the Ewald' method. The reciprocal space summation

effectively accounts for the interactions of atoms which are separated by more than one

supercell distance, which in our case is 18A. We have solved this system of equations,

which include anharmonic contributions exactly, to a numerical accuracy of 1 part in

107.

We begin with Newton's equation, a second order differential equation,

F= mi, (6)

and express this as two first order coupled ordinary differential equations, (we now drop

the cartesian subscript for convenience)

F dp(7)* dt'
dx

p = mT. (8)

The force arises from interactions involving all atoms in the supercell and beyond, and

is in addition a vector quantity. We indicate a vector quantity with boldface.

Now let us make the following change in scale:

m = m'mo, (9)

X = XIXO,

F = F'Fo,

* where m0 = mp is the proton mass, xo = 10-1°m, and Fo = 10- 8 N. We also write

cij = co x 10- 79 (j - m 6), dj = d? X 10-99(J- m8), e~i  A x 10-109(J - m 9) and

b =b x 10-1 8 (J - M4 ). Using p' = p/V ' -Po, and t' = t Fo/xomo, the equations
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of motion can be expressed in terms of quantities which are all of order unity, which is

necessary from a computational standpoint. We have

F' = dp' (10)
dtv'

, Mdx'p= m'' .x  (11)

If these scales are combined, we find that the "real" time is related to the scaled time by

t' = 2.42 x 1014t. We have employed a scaled timestep of 1 in all simulations presented

here, which corresponds to 4.1 femtoseconds.

Now that the time scales are established, it will be necessary to scale the velocities,

or momenta, in order to set the effective temperature Tefj of the crystal. We have that

EK = 2NkBTf , where

EK p3 /(2mi). (12)

In terms of the scaled, or primed variables, this becomes,
2

EK = , (moFoxo)p (13)
2m~m, 13

= 10- 18

=10-18E .S

We can solve for Tff, using kB = 1.38 x 10-23JK - 1, and find

* 2EK
T7"t = 3NK = 223.6EK. (14)
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3.3 Connections with experimental data

We now turn attention to the current-current correlation function, which will be shown

to be related to the conductivity and dielectric constant. First, we define the frequency

dependent current density-current density correlation function as

I() = I -_ dte' UIMMtjoO)), (15)

where jQ (t) is the "= 0 fourier component of the current density vector and the angular

brackets denote an ensemble average. We will refer to the current density-current

density correlation function as simply the current-current correlation function. We can

express this as34

Ha(w) = lim 1 .dt'/eiwJI(tI) 10t dt" e - i 'wt j (t ' ).

These integrations cannot be performed exactly as they extend to co; however, cutting

off the summation at t = r will give the resulting correlation function a width, Aw

. 27r/7, which can be compared with the actual width.

Many advanced texts on many-body physics discuss the connection between this

correlation function and the frequency dependent conductivity. Th'e teal part of the

conductivity at 7 = 0 can be expressed in terms of the velocity-velocity correlation

function as35

* Re~a.07 (w)] = e9 v1-Oh"")L dtew*(v.(t)V-y(0))G, (16)2hwV f t

where the subscript G indicates an average over a grand canonical ensemble, 3 - 1IkBT,

Q is the particle charge, V is the crystal volume and h =Planck's constant divided by
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2ir. Presently, we are only considering the diagonal component of this tensor, we have

therefore used the averaZ7',. e three cartesian components to improve our statistics.

All results presented 6 ,J" ,.. -'- averaged in this way. We can move the factors of

Q and V into the grand caa ...cal ensemble average to obtain the conductivity in terms

of the current density-cnrtr. '4--asity correlation function. Comparing Eqs. (15) and

(16), we find that the fur.,, ,e are calculating is related to the frequency dependent

conductivity by

)- =

We can also relate these expres.ions to the real and imaginary parts of the dielectric

function, which are more amenable to experiment-I determination.

We have

e~)= co+ i-) (18)
w

therefore,

Im(e(w)) = 2,rfl(w)(1 - e-O)V/hW2. (19)

We can then find the real part of .(w) using the Kramers-Kronig relations.

One final observation concerning the calculation of the current-current correlation

function is the following: Many quantities derived from molecular dynamics simulations

have within them some fluctuations, either from small temperature variation:, rmund-off

error, or a lack of suitably long time averaging. This effect is particularly pronounced in

correlatior functions, which sample over long distances in the crystal. It has therefore
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0

become commonplace "6, if not standard, to smooth correlation functions with a gaussian

14 hich is centered :n each data point and whose width is nominally some small quantity.

In the results to follow, we have employed such a smoothing procedure using the function

1 L'_: ~l(20)

where wo is the frequency of interest and 6 - 5.. lO1 rad - s - 1 which is 3/500 of the

full frequency width over which the correlation Linctions are calculated.

Next we define the mean square displacement as a function of time, MSD(t), which

is related to the self diffusion of the two ion types in this case,

MSD(t) = ((ri(to + t) - ri(to)) 2). (21)

The angular brackets indicate an average over all atoms or ions of type i.

The direct connection between the mean square displacement and the diffusion co-

efficient D for ti-at particular particle is given by37 ,

(r(t) 2) = 6Dt, (22)

where t is the time.

We also calculate the radial distribution function, RDF. This quantity simply ex-

presses the average number of atoms within some distance, r, of some particular atom.

4. Molecular Dynamics Simulation

In this section we give results from molecular dynamics calculations on LiI at two

temperatures. We have calculated the current-current correlation function, the mean
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square displacements for the two atoms, and the radial distribution function. The

current-current correlation function is related to the ionic conductivity through a factor

of (1 - ep")/w. We then use the relation between the ionic conductivity and the

imaginary part of the dielectric function to find the absorption. The real, or dispersive

0 part of the dielectric function is then calculated from the imaginary part using the

Kramers-Kronig relations. We have obtained these quantities at the temperatures 200K

and 400K, the first being well below the melting temperature T,,, which is 742K, and

of the same ordei cf magnitude as the Debye temperature(OD). The second temperature

is still well below T, h.t presumably almost 20D and should exhibit large anharmonic

effects. We account for the thermal expansion of the crystal using Eqs. (3) and (4).

The thermal expansion produces a decrease in the TO frequency as a function of

increasing temperature. This is simpl, understood as a consequence of the atoms

moving further from the absolute minimum of their potential energy positions as the

temperature increases. In addition to this "static" frequency shift, there is also to be

expected a dynamic downward shift in frequency with increasing temperature due to

the vibrating atoms reaching into regions of the potential with decreasing curvature.

It is not at all clear that the initial positions and momenta represent an equilibrium

configuration; therefore, we integrate the equations of motion ahead for some thermal-

ization time, tTH. One criterion for determining when this thermalization time has been

reached, and the one to be used here, is that the effective temperature Tf.f = Ek/(. kB),S2
varies by less than a couple of percent across the sample, and that it not vary with time.

We have tricked the system into quickly achieving this thermal equilibrium in the fol-
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lowing way; at the beginning of the simulation, the potential and kinetic energies are

calculated, the momenta are scaled to correspond to the desired temperature, tnen the

positions are adjusted so that the kinetic and potential energies have roughly the same

value, as they should according to the equipartition theorem. Although this does not

result in perfect thermal equilibrium, it decreases the computer time necessary to reach

this stage. We used 18,000 timesteps to reach a good thermal equilibrium at 200K and

400K.

4.1 Results and Discussion

We performed simulations on a 216 atom cube with periodic boundary conditions. The

cutoff parameter in the Madelung sum was set to 0.35, and we sum over reciprocal lattice

vectors up to relative magnitude IK12 - 48. The energy and temperature fluctuated less

than 4% over the entire simulation time for all the cases presented here. The timestep

was 4.1 femtoseconds. This timestep is somewhat arbitrary as the differential equation

solver uses as many timesteps as is necessary to meet the tolerance requirements as set

by the user, which was set to 1 part in 10'. We have performed an ensemble average

over two sets of different, but random, initial conditions. All of the results presented

below have been averaged over these two separate simulations.

We first present results for T = 200K, for which 18000 timesteps were required

for thermalization. The lattice spacing and TO frequency at the zone center for this

* temperature are 2.99A and 3.4 x 1013rad - s- 1, respectively. The correlation func-

tions were calculated over 8000 timesteps and averaged over two sets of random initial

conditions. These numbers correspond to 73.8 x 10-12 seconds of thermalization time
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and 32.8 x 10-12 seconds of data gathering time. This is indeed a rather short time,

however, the correlation functions show little or no change after 6000 steps. We first

present in Fig. 1 the imaginary part of the dielectric constant, or the absorption peak

from the current-current correlation function at T = 200K, in arbitrary units. Note

the small oscillations superimposed on the main peak; these could be smoothed by

widening the width of the smoothing gaussian as described in the previous section. We

will encounter these features in the data for T = 400K as well, and will take up their

possible causes and solutions then. The function peaks at the TO frequency at = 0,

3.4 x 1013rad - s - 1 as expected, and shows a small tail, as seen in Fig. 1.

Using the Kramers-Kronig relationsa8, we have calculated the dispersion, or real part

of the dielectric function, with the results for 8000 timesteps at T = 200K also shown

in Fig. 1. As is typical, the region of anomalous dispersion coincides with the region of

strong absorption.

In Fig. 2 is plotted the radial distribution function for 1500 timesteps. The results

for longer run times and for T = 400K are indistinguishable. It is interesting to

note the extremely sharp and well defined peaks corresponding to the various neighbor

positions. In Table III we give the number of neighbors and their distances for the

rock-salt structure with the nearest neighbor distance normalized to unity. We can

identify up to the 10 h neighbor from the graph and see that the area under each peak

reproduces the number of the various neighbors very precisely.

Next, in Fig. 3 are given the mean square displacements for Li+ and I- ions at 200K.

We note immediately that there is no diffusion, as is expected at this low temperature.
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Figure i" Real and imaginary parts of the dielectric function of LiU (in arbitrary units) calculated over
8000 timesteps. This data represents an average over two sets of random initial conditions calculated

at a temperature of 200K. The lattice spacing and TO frequency at the zone center are 2.99A and

3.4 x 10f 3rad- s-' respectively.
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Figure 2: Radial distribution function for L:I at 200K. Note that the areas under these extremely
well defined peaks correspond to the relevant number of neighbors listed in Table Ill.
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Figure 3: Mean square displacement as a function of time at T = 200K for iodine, solid line, and
lithium dashed line.
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TABLE III: Numbers of various neighbors and their distances for Lii
Neighbor number number of neighbors normalized distance

1 6 1 _ _

2 12 v/2 : 1.41
3 8 03 _ _ _ _ 1.73
4 6 2
5 24 V 5'2.23
6 24 V6____ 2.45
7 12 \78 2.83
8 27 3
9 12 v/10--3.16
10 12 11_ 3.32

If self diffusion were taking place, we would see the mean square displacement increase

linearly with time, as indicated in Eq. (22). We can estimate the frequenc-, of oscillation

of the lithium using the spacing of the peaks, which is 150 f'emtoseconds for the lithium

and 600 femtoseconds for the iodine. 'The frequency of the iodine motion is close to

one-quarter that of the lithium, which corresponds very closely to the square root of

the ratio of their masses, which is mLImI = 0.23.

We now turn attention to a simulation on the same system but at 400K. One

advantage of performing these calculations at a temperature larger than the Debye

temperature is that any inhomogeneities in the initial conditions should be evened

out quickly due to the large anharmonicities at work. We have used the same initial

positions and momenta as in the previous simulation, but scaled to correspond to this

temperature. The interatomic spacing and TO frequency at 400K are P 3.021 and

2.99 x 1013rad - s- ' respectively. 18,000 timesteps were used for thermalization, and

the same timestep of 4.1 femtoseconds was used throughout.
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In Fig. 4 are plotted the absorption and dispersion after 8000 timesteps at 400K.

0 The gross structure of these plots exhibits the following features. The middle of the

three maxima occurs very near the TO frequency of 2.99 x 1013 rad - s- 1, although

its exact position cannot be pinned down. The width of the function has increased

0 noticeably, from a full width at half maximum of - 0.2 x 1013rad - s- 1, at T = 200K,

in Fig. 1, to ;. 1.2 x 1013 rad - s- 1 in Fig. 4. In addition, the length of the high

frequency tail is greatly increased at the higher temperature.

One disturbing feature of these correlation functions is the persistence of the periodic

maxima and minima. It is found that temporal and ensemble averaging decreases the-

magnitude of these oscillations. Therefore, we believe this small scale structure to be

unphysical and a consequence of the finite time averaging.

Finally in Fig. 5 is plotted the mean square displacement calculated after 8000

timesteps. The magnitude of the displacements for the two species is the same indicating

that the temperatures of the two sublattices are the same.

5. Conclusion

We have calculated the frequency dependent dielectric function, the radial distribution

function and mean square displacements, all as functions of temperature, for crystalline

lithium iodide. A rigid ion model was used for the interatomic potential. The various

parameters in this potential were fit to the thermal expansion, the isothermal compress-

ibility, the lattice energy and the frequency of the TO mode at the zone center. We

have also included a term which acts as a hard core repulsion, preventing the solid from
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Figure 4: Real and imaginary parts of the dielectric function at T =400K after 8000 timesteps of
* data taking. The lattice spacing at this -.. yerature is 3.02A. This absorption peaks near the TO

frequency of 2.99 x 10' 3rad - s , however, the broadness inhibits an exact determination of the peak
position.
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Figure 5: Mean square displacement as a function of time at T = 400K for iodine, solid line, and
lithium dashed line.
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collapsing at high temperatures.

A large increase in anharmonic broadening in the frequency dependent correlation

functions was observed in passing from T = 200K to T = 400K, indicating that the

Debye temperature for this material most likely lies in this range, as we had inferred

from data from other alkali iodides (see Table I). We have been able to reproduce

the TO frequency within 10% of the experimental value, although no experimental

measurement of the temperature dependence of the infrared absorption or dispersion

for this material has been found. It would be very interesting if experimental data on

these temperature dependences were to become available to provide a comparison with

our theoretical results.
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